Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 142(11): 1984-91, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25977369

RESUMEN

Vascular endothelial growth factor A (Vegfa) has important roles in endochondral bone formation. Osteoblast precursors, endothelial cells and osteoclasts migrate from perichondrium into primary ossification centers of cartilage templates of future bones in response to Vegfa secreted by (pre)hypertrophic chondrocytes. Perichondrial osteolineage cells also produce Vegfa, but its function is not well understood. By deleting Vegfa in osteolineage cells in vivo, we demonstrate that progenitor-derived Vegfa is required for blood vessel recruitment in perichondrium and the differentiation of osteoblast precursors in mice. Conditional deletion of Vegfa receptors indicates that Vegfa-dependent effects on osteoblast differentiation are mediated by Vegf receptor 2 (Vegfr2). In addition, Vegfa/Vegfr2 signaling stimulates the expression and activity of Indian hedgehog, increases the expression of ß-catenin and inhibits Notch2. Our findings identify Vegfa as a regulator of perichondrial vascularity and osteoblast differentiation at early stages of bone development.


Asunto(s)
Desarrollo Óseo , Huesos/irrigación sanguínea , Diferenciación Celular , Neovascularización Fisiológica , Osteoblastos/citología , Osteoblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Huesos/metabolismo , Calcificación Fisiológica , Recuento de Células , Linaje de la Célula , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Osteogénesis , Receptor Notch2/metabolismo , Transducción de Señal , Células Madre/citología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína con Dedos de Zinc GLI1 , beta Catenina/metabolismo
2.
Int J Exp Pathol ; 97(4): 296-302, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27581728

RESUMEN

Studies of proliferative hemangiomas have led to the discovery that interactions of endothelial cells with extracellular matrix and/or Vascular Endothelial Growth Factor (VEGF)-A stimulate the expression of VEGFR1, the VEGF decoy receptor, and suppress VEGF-dependent VEGFR2 signalling by a mechanism that requires the matrix-binding receptor Anthrax Toxin Receptor (ANTXR)1, VEGFR2, ß1 integrin and the Nuclear Factor of Activated T cells (NFAT). In hemangioma endothelial cells, all these components are present, but are functionally compromised, so that the levels of VEGFR1 are extremely low and VEGFR2 signalling is constitutively active. Consequently, the levels of Hypoxia Inducible Factor (HIF)-1α and its transcriptional targets, VEGF-A and C-X-C motif chemokine 12 (CxCl12), are elevated and a positive VEGF-A feedback loop is established. Overexpression of ANTXR1, carrying a heterozygous Ala-to-Thr mutation, induces hemangioma-like signalling in control endothelial cells; VEGF signalling is normalized when wild-type ANTXR1 is overexpressed in hemangioma cells. These findings suggest that ANTXR1 functions as a negative regulator of VEGF-A signalling. Studies of a mouse model of the Growth Retardation, Alopecia, Pseudo-anodontia and Optic Atrophy (GAPO) syndrome, caused by the loss-of-function mutations in ANTXR1, as well as knock-in mice carrying the Ala-to-Thr ANTXR1 mutation, confirm that ANTXR1 functions as a suppressor of VEGF-A signalling. Cutaneous endothelial cells isolated from ANTXR1-deficient mice exhibit low levels of VEGFR1, elevated levels of VEGF-A, HIF-1α and CxCl12 and activated VEGFR2 signalling as in hemangioma. Increased numbers of myeloid cells in the skin of ANTXR1-deficient mice are associated with reduced vascularity and increased skin fibrosis, suggesting a mechanism for hemangioma involution and replacement by fibrotic scars. Through controlling VEGF-A signalling and extracellular matrix synthesis, ANTXR1 is emerging as a key regulator of skeletal and connective tissue development and homeostasis.


Asunto(s)
Desarrollo Óseo/fisiología , Tejido Conectivo/crecimiento & desarrollo , Hemangioma/metabolismo , Homeostasis/fisiología , Animales , Hemangioma/patología , Humanos , Proteínas de Microfilamentos , Proteínas de Neoplasias/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Bioconjug Chem ; 27(2): 329-40, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26646666

RESUMEN

A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.


Asunto(s)
Enfermedades Óseas/diagnóstico , Huesos/patología , Difosfonatos/química , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Animales , Línea Celular , Humanos , Masculino , Ratas Sprague-Dawley
4.
Calcif Tissue Int ; 90(3): 202-10, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22249525

RESUMEN

Differences in the binding affinities of bisphosphonates for bone mineral have been proposed to determine their localizations and duration of action within bone. The main objective of this study was to test the hypothesis that mineral binding affinity affects bisphosphonate distribution at the basic multicellular unit (BMU) level within both cortical and cancellous bone. To accomplish this objective, skeletally mature female rabbits (n = 8) were injected simultaneously with both low- and high-affinity bisphosphonate analogs bound to different fluorophores. Skeletal distribution was assessed in the rib, tibia, and vertebra using confocal microscopy. The staining intensity ratio between osteocytes contained within the cement line of newly formed rib osteons or within the reversal line of hemiosteons in vertebral trabeculae compared to osteocytes outside the cement/reversal line was greater for the high-affinity compared to the low-affinity compound. This indicates that the low-affinity compound distributes more equally across the cement/reversal line compared to a high-affinity compound, which concentrates mostly near surfaces. These data, from an animal model that undergoes intracortical remodeling similar to humans, demonstrate that the affinity of bisphosphonates for the bone determines the reach of the drugs in both cortical and cancellous bone.


Asunto(s)
Conservadores de la Densidad Ósea/farmacocinética , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Difosfonatos/farmacocinética , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Unión Competitiva/efectos de los fármacos , Unión Competitiva/fisiología , Remodelación Ósea/fisiología , Huesos/citología , Femenino , Osteón/citología , Osteón/efectos de los fármacos , Osteón/metabolismo , Osteocitos/citología , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Osteoporosis/tratamiento farmacológico , Conejos , Distribución Tisular/fisiología
5.
Sci Rep ; 7(1): 13027, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026147

RESUMEN

Genome wide studies indicate that vascular endothelial growth factor A (VEGF) is associated with osteoarthritis (OA), and increased VEGF expression correlates with increased disease severity. VEGF is also a chondrocyte survival factor during development and essential for bone formation, skeletal growth and postnatal homeostasis. This raises questions of how the important embryonic and postnatal functions of VEGF can be reconciled with an apparently destructive role in OA. Addressing these questions, we find that VEGF acts as a survival factor in growth plate chondrocytes during development but only up until a few weeks after birth in mice. It is also required for postnatal differentiation of articular chondrocytes and the timely ossification of bones in joint regions. In surgically induced knee OA in mice, a model of post-traumatic OA in humans, increased expression of VEGF is associated with catabolic processes in chondrocytes and synovial cells. Conditional knock-down of Vegf attenuates induced OA. Intra-articular anti-VEGF antibodies suppress OA progression, reduce levels of phosphorylated VEGFR2 in articular chondrocytes and synovial cells and reduce levels of phosphorylated VEGFR1 in dorsal root ganglia. Finally, oral administration of the VEGFR2 kinase inhibitor Vandetanib attenuates OA progression.


Asunto(s)
Cartílago Articular/embriología , Cartílago Articular/patología , Osteoartritis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Administración Oral , Animales , Anticuerpos/farmacología , Desarrollo Óseo , Diferenciación Celular , Linaje de la Célula , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Progresión de la Enfermedad , Endotelio/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Integrasas/metabolismo , Articulación de la Rodilla/patología , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Osteoartritis/patología , Osteogénesis , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Factor A de Crecimiento Endotelial Vascular/deficiencia , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
J Bone Miner Res ; 32(9): 1860-1869, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28337806

RESUMEN

Bisphosphonates are widely used in the treatment of clinical disorders characterized by increased bone resorption, including osteoporosis, Paget's disease, and the skeletal complications of malignancy. The antiresorptive potency of the nitrogen-containing bisphosphonates on bone in vivo is now recognized to depend upon two key properties, namely mineral binding affinity and inhibitory activity on farnesyl pyrophosphate synthase (FPPS), and these properties vary independently of each other in individual bisphosphonates. The better understanding of structure activity relationships among the bisphosphonates has enabled us to design a series of novel bisphosphonates with a range of mineral binding properties and antiresorptive potencies. Among these is a highly potent bisphosphonate, 1-fluoro-2-(imidazo-[1,2 alpha]pyridin-3-yl)-ethyl-bisphosphonate, also known as OX14, which is a strong inhibitor of FPPS, but has lower binding affinity for bone mineral than most of the commonly studied bisphosphonates. The aim of this work was to characterize OX14 pharmacologically in relation to several of the bisphosphonates currently used clinically. When OX14 was compared to zoledronate (ZOL), risedronate (RIS), and minodronate (MIN), it was as potent at inhibiting FPPS in vitro but had significantly lower binding affinity to hydroxyapatite (HAP) columns than ALN, ZOL, RIS, and MIN. When injected i.v. into growing Sprague Dawley rats, OX14 was excreted into the urine to a greater extent than the other bisphosphonates, indicating reduced short-term skeletal uptake and retention. In studies in both Sprague Dawley rats and C57BL/6J mice, OX14 inhibited bone resorption, with an antiresorptive potency equivalent to or greater than the comparator bisphosphonates. In the JJN3-NSG murine model of myeloma-induced bone disease, OX14 significantly prevented the formation of osteolytic lesions (p < 0.05). In summary, OX14 is a new, highly potent bisphosphonate with lower bone binding affinity than other clinically relevant bisphosphonates. This renders OX14 an interesting potential candidate for further development for its potential skeletal and nonskeletal benefits. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Difosfonatos/farmacología , Difosfonatos/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley
7.
Matrix Biol ; 52-54: 127-140, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26899202

RESUMEN

Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme.


Asunto(s)
Mandíbula/crecimiento & desarrollo , Cresta Neural/citología , Cráneo/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Recién Nacidos , Calcificación Fisiológica , Proliferación Celular , Células Cultivadas , Colágeno Tipo II/metabolismo , Técnicas de Silenciamiento del Gen , Mandíbula/metabolismo , Ratones , Cráneo/metabolismo , Factor de Transcripción Sp7/metabolismo
8.
Bone ; 49(1): 20-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21497677

RESUMEN

The ability of bisphosphonates ((HO)(2)P(O)CR(1)R(2)P(O)(OH)(2)) to inhibit bone resorption has been known since the 1960s, but it is only recently that a detailed molecular understanding of the relationship between chemical structures and biological activity has begun to emerge. The early development of chemistry in this area was largely empirical and based on modifying R(2) groups in a variety of ways. Apart from the general ability of bisphosphonates to chelate Ca(2+) and thus target the calcium phosphate mineral component of bone, attempts to refine clear structure-activity relationships had led to ambiguous or seemingly contradictory results. However, there was increasing evidence for cellular effects, and eventually the earliest bisphosphonate drugs, such as clodronate (R(1)=R(2)=Cl) and etidronate (R(1)=OH, R(2)=CH(3)), were shown to exert intracellular actions via the formation in vivo of drug derivatives of ATP. The observation that pamidronate, a bisphosphonate with R(1)=OH and R(2)=CH(2)CH(2)NH(2), exhibited higher potency than previously known bisphosphonate drugs represented the first step towards the later recognition of the critical importance of having nitrogen in the R(2) side chain. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates took place particularly in the 1980s, but still with an incomplete understanding of their structure-activity relationships. A major advance was the discovery that the anti-resorptive effects of the nitrogen-containing bisphosphonates (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their potency as inhibitors of the enzyme farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids utilized in sterol synthesis and for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of bisphosphonates have been synthesized and studied. Interest in expanding the structural scope of the bisphosphonate class has also motivated new approaches to the chemical synthesis of these compounds. Recent chemical innovations include the synthesis of fluorescently labeled bisphosphonates, which has enabled studies of the biodistribution of these drugs. As a class, bisphosphonates share common properties. However, as with other classes of drugs, there are chemical, biochemical, and pharmacological differences among the individual compounds. Differences in mineral binding affinities among bisphosphonates influence their differential distribution within bone, their biological potency, and their duration of action. The overall pharmacological effects of bisphosphonates on bone, therefore, appear to depend upon these two key properties of affinity for bone mineral and inhibitory effects on osteoclasts. The relative contributions of these properties differ among individual bisphosphonates and help determine their clinical behavior and effectiveness.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Animales , Huesos/efectos de los fármacos , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/metabolismo , Difosfonatos/metabolismo , Humanos , Modelos Biológicos , Osteoclastos/efectos de los fármacos , Osteoclastos/enzimología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA