RESUMEN
TGF-betas play diverse and complex roles in many biological processes. In tumorigenesis, they can function either as tumor suppressors or as pro-oncogenic factors, depending on the stage of the disease. We have developed transgenic mice expressing a TGF-beta antagonist of the soluble type II TGF-beta receptor:Fc fusion protein class, under the regulation of the mammary-selective MMTV-LTR promoter/enhancer. Biologically significant levels of antagonist were detectable in the serum and most tissues of this mouse line. The mice were resistant to the development of metastases at multiple organ sites when compared with wild-type controls, both in a tail vein metastasis assay using isogenic melanoma cells and in crosses with the MMTV-neu transgenic mouse model of metastatic breast cancer. Importantly, metastasis from endogenous mammary tumors was suppressed without any enhancement of primary tumorigenesis. Furthermore, aged transgenic mice did not exhibit the severe pathology characteristic of TGF-beta null mice, despite lifetime exposure to the antagonist. The data suggest that in vivo the antagonist may selectively neutralize the undesirable TGF-beta associated with metastasis, while sparing the regulatory roles of TGF-betas in normal tissues. Thus this soluble TGF-beta antagonist has potential for long-term clinical use in the prevention of metastasis.
Asunto(s)
Fragmentos Fc de Inmunoglobulinas/fisiología , Inmunoglobulina G/fisiología , Neoplasias Hepáticas/secundario , Neoplasias Mamarias Animales/prevención & control , Melanoma Experimental/prevención & control , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Femenino , Vectores Genéticos , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Neoplasias Mamarias Animales/patología , Virus del Tumor Mamario del Ratón , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia/prevención & control , Proteínas Serina-Treonina Quinasas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Solubilidad , Células Tumorales CultivadasRESUMEN
Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.