Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28735-28742, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139538

RESUMEN

Paramecium bursaria chlorella virus-1 (PBCV-1) is a large double-stranded DNA (dsDNA) virus that infects the unicellular green alga Chlorella variabilis NC64A. Unlike many other viruses, PBCV-1 encodes most, if not all, of the enzymes involved in the synthesis of the glycans attached to its major capsid protein. Importantly, these glycans differ from those reported from the three domains of life in terms of structure and asparagine location in the sequon of the protein. Previous data collected from 20 PBCV-1 spontaneous mutants (or antigenic variants) suggested that the a064r gene encodes a glycosyltransferase (GT) with three domains, each with a different function. Here, we demonstrate that: domain 1 is a ß-l-rhamnosyltransferase; domain 2 is an α-l-rhamnosyltransferase resembling only bacterial proteins of unknown function, and domain 3 is a methyltransferase that methylates the C-2 hydroxyl group of the terminal α-l-rhamnose (Rha) unit. We also establish that methylation of the C-3 hydroxyl group of the terminal α-l-Rha is achieved by another virus-encoded protein A061L, which requires an O-2 methylated substrate. This study, thus, identifies two of the glycosyltransferase activities involved in the synthesis of the N-glycan of the viral major capsid protein in PBCV-1 and establishes that a single protein A064R possesses the three activities needed to synthetize the 2-OMe-α-l-Rha-(1→2)-ß-l-Rha fragment. Remarkably, this fragment can be attached to any xylose unit.


Asunto(s)
Proteínas de la Cápside/metabolismo , Glicosiltransferasas/metabolismo , Metiltransferasas/metabolismo , Modelos Estructurales , Phycodnaviridae/enzimología , Escherichia coli , Ramnosa/metabolismo
2.
J Biol Chem ; 294(14): 5688-5699, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737276

RESUMEN

The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a ß-l-rhamnosyltransferase activity, domain 2 has an α-l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal α-l-rhamnose (Rha) unit. The a075l gene encodes a ß-xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.


Asunto(s)
Antígenos Virales/metabolismo , Proteínas de la Cápside/metabolismo , Chlorella/metabolismo , Glicosiltransferasas/metabolismo , Phycodnaviridae/enzimología , Polisacáridos/metabolismo , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Chlorella/genética , Chlorella/virología , Glicosiltransferasas/genética , Glicosiltransferasas/inmunología , Phycodnaviridae/genética , Phycodnaviridae/inmunología , Polisacáridos/genética , Polisacáridos/inmunología
3.
Adv Exp Med Biol ; 1104: 237-257, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484252

RESUMEN

The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a ß-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8-10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, L-arabinose and D-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.


Asunto(s)
Proteínas de la Cápside/química , Chlorella/virología , Glicosilación , Phycodnaviridae/química , Polisacáridos/química
4.
Antonie Van Leeuwenhoek ; 110(11): 1391-1399, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28331984

RESUMEN

Results from recent studies are breaking the paradigm that all viruses depend on their host machinery to glycosylate their proteins. Chloroviruses encode several genes involved in glycan biosynthesis and some of their capsid proteins are decorated with N-linked oligosaccharides with unique features. Here we describe the elucidation of the N-glycan structure of an unusual chlorovirus, NE-JV-1, that belongs to the Pbi group. The host for NE-JV-1 is the zoochlorella Micractinium conductrix. Spectroscopic analyses established that this N-glycan consists of a core region that is conserved in all of the chloroviruses. The one difference is that the residue 3OMe-L-rhamnose is acetylated at the O-2 position in a non-stoichiometric fashion.


Asunto(s)
Proteínas de la Cápside/química , Phycodnaviridae/química , Polisacáridos/química , Proteínas de la Cápside/aislamiento & purificación , Chlorella/virología , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Glicosilación , Oligosacáridos/química , Phycodnaviridae/ultraestructura , Polisacáridos/aislamiento & purificación , Espectroscopía de Protones por Resonancia Magnética , Ramnosa/química , Proteínas Virales/química , Proteínas Virales/aislamiento & purificación
5.
J Virol ; 88(21): 12541-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142578

RESUMEN

UNLABELLED: Superoxide dismutases (SODs) are metalloproteins that protect organisms from toxic reactive oxygen species by catalyzing the conversion of superoxide anion to hydrogen peroxide and molecular oxygen. Chlorovirus PBCV-1 encodes a 187-amino-acid protein that resembles a Cu-Zn SOD with all of the conserved amino acid residues for binding copper and zinc (named cvSOD). cvSOD has an internal Met that results in a 165-amino-acid protein (named tcvSOD). Both cvSOD and tcvSOD recombinant proteins inhibited nitroblue tetrazolium reduction of superoxide anion generated in a xanthine-xanthine oxidase system in solution. tcvSOD was chosen for further characterization because it was easier to produce. Recombinant tcvSOD also inhibited a riboflavin photochemical reduction system in a polyacrylamide gel assay, which was blocked by the Cu-Zn SOD inhibitor cyanide but not by azide, which inhibits Fe and Mn SODs. A k(cat)/K(m) value for cvSOD was determined by stop-flow spectrophotometry as 1.28 × 10(8) M(-1) s(-1), suggesting that cvSOD-catalyzed O2 (-) dismutation was not a diffusion controlled encounter. The cvsod gene was expressed as a late gene, and cvSOD activity was detected in purified virions. Superoxide accumulated rapidly during virus infection, and circumstantial evidence indicates that cvSOD aids its decomposition to benefit virus replication. Cu-Zn SOD homologs have been described to occur in 3 other families of large DNA viruses, poxviruses, baculoviruses, and mimiviruses, which group as a clade. Interestingly, cvSOD does not group in the same clade as the other virus SODs but instead groups in an expanded clade that includes Cu-Zn SODs from many cellular organisms. IMPORTANCE: Virus infection often leads to an increase in toxic reactive oxygen species in the host, which can be detrimental to virus replication. Viruses have developed various ways to overcome this barrier. As reported in this article, the chloroviruses often encode and package a functional Cu-Zn superoxide dismutase in the virion that presumably lowers the concentration of reactive oxygen induced early during virus infection.


Asunto(s)
Phycodnaviridae/enzimología , Phycodnaviridae/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Cinética , Datos de Secuencia Molecular , Nitroazul de Tetrazolio/metabolismo , Oxidación-Reducción , Filogenia , Riboflavina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Virión/enzimología
6.
J Virol ; 86(16): 8821-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22696644

RESUMEN

The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.


Asunto(s)
Paramecium/virología , Phycodnaviridae/química , Phycodnaviridae/genética , Proteoma/análisis , Proteínas Virales/análisis , Genoma Viral , Espectrometría de Masas , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN
7.
J Virol ; 84(1): 532-42, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828609

RESUMEN

Paramecium bursaria chlorella virus 1 (PBCV-1), a member of the family Phycodnaviridae, is a large double-stranded DNA, plaque-forming virus that infects the unicellular green alga Chlorella sp. strain NC64A. The 330-kb PBCV-1 genome is predicted to encode 365 proteins and 11 tRNAs. To monitor global transcription during PBCV-1 replication, a microarray containing 50-mer probes to the PBCV-1 365 protein-encoding genes (CDSs) was constructed. Competitive hybridization experiments were conducted by using cDNAs from poly(A)-containing RNAs obtained from cells at seven time points after virus infection. The results led to the following conclusions: (i) the PBCV-1 replication cycle is temporally programmed and regulated; (ii) 360 (99%) of the arrayed PBCV-1 CDSs were expressed at some time in the virus life cycle in the laboratory; (iii) 227 (62%) of the CDSs were expressed before virus DNA synthesis begins; (iv) these 227 CDSs were grouped into two classes: 127 transcripts disappeared prior to initiation of virus DNA synthesis (considered early), and 100 transcripts were still detected after virus DNA synthesis begins (considered early/late); (v) 133 (36%) of the CDSs were expressed after virus DNA synthesis begins (considered late); and (vi) expression of most late CDSs is inhibited by adding the DNA replication inhibitor, aphidicolin, prior to virus infection. This study provides the first comprehensive evaluation of virus gene expression during the PBCV-1 life cycle.


Asunto(s)
Chlorella/virología , Perfilación de la Expresión Génica/métodos , Phycodnaviridae/genética , Transcripción Genética , Afidicolina/farmacología , ADN Viral/biosíntesis , Análisis por Micromatrices , ARN Viral/análisis , Factores de Tiempo , Replicación Viral
8.
J Virol ; 84(17): 8829-38, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20538863

RESUMEN

Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.


Asunto(s)
Mimiviridae/metabolismo , Phycodnaviridae/metabolismo , Ramnosa/biosíntesis , Proteínas Virales/metabolismo , Acanthamoeba castellanii/virología , Vías Biosintéticas , Chlorella/virología , Transferencia de Gen Horizontal , Mimiviridae/clasificación , Mimiviridae/enzimología , Mimiviridae/genética , Datos de Secuencia Molecular , Phycodnaviridae/clasificación , Phycodnaviridae/enzimología , Phycodnaviridae/genética , Filogenia , Proteínas Virales/genética
9.
Viruses ; 13(1)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435207

RESUMEN

The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum-Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes.


Asunto(s)
Glicosiltransferasas/metabolismo , Phycodnaviridae/fisiología , Polisacáridos/biosíntesis , Dominios Proteicos , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Glicosiltransferasas/química , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Proteínas Virales/química
10.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924931

RESUMEN

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Asunto(s)
Pared Celular/metabolismo , Chlorella/metabolismo , Chlorella/virología , ADN Ligasas/metabolismo , Interacciones Huésped-Patógeno , Phycodnaviridae/fisiología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Clorofila/metabolismo , ADN Ligasas/química , ADN Ligasas/genética , Activación Enzimática , Phycodnaviridae/clasificación , Phycodnaviridae/genética , Phycodnaviridae/ultraestructura , Filogenia , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/genética , Virión , Acoplamiento Viral
11.
Viruses ; 12(10)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081353

RESUMEN

Viruses rely on their host's translation machinery for the synthesis of their own proteins. Problems belie viral translation when the host has a codon usage bias (CUB) that is different from an infecting virus due to differences in the GC content between the host and virus genomes. Here, we examine the hypothesis that chloroviruses adapted to host CUB by acquisition and selection of tRNAs that at least partially favor their own CUB. The genomes of 41 chloroviruses comprising three clades, each infecting a different algal host, have been sequenced, assembled and annotated. All 41 viruses not only encode tRNAs, but their tRNA genes are located in clusters. While differences were observed between clades and even within clades, seven tRNA genes were common to all three clades of chloroviruses, including the tRNAArg gene, which was found in all 41 chloroviruses. By comparing the codon usage of one chlorovirus algal host, in which the genome has been sequenced and annotated (67% GC content), to that of two of its viruses (40% GC content), we found that the viruses were able to at least partially overcome the host's CUB by encoding tRNAs that recognize AU-rich codons. Evidence presented herein supports the hypothesis that a chlorovirus tRNA cluster was present in the most recent common ancestor (MRCA) prior to divergence into three clades. In addition, the MRCA encoded a putative isoleucine lysidine synthase (TilS) that remains in 39/41 chloroviruses examined herein, suggesting a strong evolutionary pressure to retain the gene. TilS alters the anticodon of tRNAMet that normally recognizes AUG to then recognize AUA, a codon for isoleucine. This is advantageous to the chloroviruses because the AUA codon is 12-13 times more common in the chloroviruses than their host, further helping the chloroviruses to overcome CUB. Among large DNA viruses infecting eukaryotes, the presence of tRNA genes and tRNA clusters appear to be most common in the Phycodnaviridae and, to a lesser extent, in the Mimiviridae.


Asunto(s)
Uso de Codones , Variación Genética , Genoma Viral , Phycodnaviridae/genética , ARN de Transferencia/genética , Codón , Cianobacterias/virología , Interacciones Microbiota-Huesped , Familia de Multigenes , Phycodnaviridae/clasificación , Filogenia
12.
Viruses ; 9(4)2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28441734

RESUMEN

Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.


Asunto(s)
Chlorella/virología , Genes Virales , Redes y Vías Metabólicas , Phycodnaviridae/genética , Phycodnaviridae/fisiología , Metabolismo de los Hidratos de Carbono
13.
Virology ; 500: 103-113, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816636

RESUMEN

A previous report indicated that prototype chlorovirus PBCV-1 replicated in two Chlorella variabilis algal strains, NC64A and Syngen 2-3, that are ex-endosymbionts isolated from the protozoan Paramecium bursaria. Surprisingly, plaque-forming viruses on Syngen 2-3 lawns were often higher than on NC64A lawns from indigenous water samples. These differences led to the discovery of viruses that exclusively replicate in Syngen 2-3 cells, named Only Syngen (OSy) viruses. OSy-NE5, the prototype virus for the proposed new species, had a linear dsDNA genome of 327kb with 44-nucleotide-long, incompletely base-paired, covalently closed hairpin ends. Each hairpin structure was followed by an identical 2612 base-paired inverted sequence after which the DNA sequence diverged. OSy-NE5 encoded 357 predicted CDSs and 13 tRNAs. Interestingly, OSy-NE5 attached to and initiated infection in NC64A cells but infectious progeny viruses were not produced; thus OSy-NE5 replication in NC64A is blocked at some later stage of replication.


Asunto(s)
Chlorella/virología , Phycodnaviridae/genética , Filogenia , Secuencia de Bases , Genoma Viral , Datos de Secuencia Molecular , Phycodnaviridae/clasificación , Phycodnaviridae/aislamiento & purificación , Phycodnaviridae/fisiología , ARN Viral/química , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA