Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(33): e2309579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38530067

RESUMEN

Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data-driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr-1 with the resulting graphene nanoplatelets being suitable for screen-printed micro-supercapacitors. Finally, life cycle assessment reveals that ethanol-based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.

2.
Environ Sci Technol ; 58(11): 4957-4967, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38446013

RESUMEN

Electrification and clean hydrogen are promising low-carbon options for decarbonizing industrial process heat, which is an essential target for reducing sector-wide emissions. However, industrial processes with heat demand vary significantly across industries in terms of temperature requirements, capacities, and equipment, making it challenging to determine applications for low-carbon technologies that are technically and economically feasible. In this analysis, we develop a framework for evaluating life cycle emissions, water use, and cost impacts of electric and clean hydrogen process heat technologies and apply it in several case studies for plastics and petrochemical manufacturing industries in the United States. Our results show that industrial heat pumps could reduce emissions by 12-17% in a typical poly(vinyl chloride) (PVC) facility in certain locations currently, compared to conventional natural gas combustion, and that other electric technologies in PVC and ethylene production could reduce emissions by nearly 90% with a sufficiently decarbonized electric grid. Life cycle water use increases significantly in all low-carbon technology cases. The levelized cost of heat of viable low-carbon technologies ranges from 15 to 100% higher than conventional heating systems, primarily due to energy costs. We discuss results in the context of relevant policies that could be useful to manufacturing facilities and policymakers for aiding the transition to low-carbon process heat technologies.


Asunto(s)
Cloruro de Vinilo , Estados Unidos , Calor , Carbono , Instalaciones Industriales y de Fabricación , Etilenos , Hidrógeno , Agua
3.
Environ Sci Technol ; 57(8): 3402-3414, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791333

RESUMEN

Demand for graphite will grow with expanding use of lithium-ion batteries in the United States. Much graphite is imported, raising supply chain risks. It is therefore imperative to characterize graphite's sources and sinks. Accordingly, we present the first material flow analysis for natural and synthetic graphite in the U.S. The analysis (for 2018) begins with processed graphite trade and includes graphite production, graphite product trade, manufacturing of end products, end product use, and waste management. It considers 11 end-use applications for graphite, two waste management stages, and three recycling pathways. In 2018, 354 thousand tonnes (kt) of processed graphite were consumed in the U.S., including 60 kt natural graphite and 294 kt synthetic graphite. 145 kt of graphite were traded. Refractories and foundries consumed 56% of natural graphite; 42% of synthetic graphite went into making graphite electrodes. Batteries accounted for 10 and 5% of natural and synthetic graphite consumption, respectively; 78% of total graphite used dissipated into the environment; 22% reached the waste disposal stage of which 71% was landfilled and 29% was recycled; and 59 kt of graphite accumulated in in-use stocks. Recycling more graphite and producing graphite from lignin would favorably influence today's supply chain.


Asunto(s)
Grafito , Eliminación de Residuos , Administración de Residuos , Estados Unidos , Litio , Suministros de Energía Eléctrica , Reciclaje
4.
Environ Sci Technol ; 55(20): 14215-14224, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618441

RESUMEN

Today, polyurethanes are effectively not recycled and are made principally from nonrenewable, fossil-fuel-derived resources. This study provides the first high-resolution material flow analysis of polyurethane flows through the U.S. economy, tracking back to fossil fuels and covering polyurethane-relevant raw materials, trade, production, manufacturing, uses, historical stocks, and waste management. According to our analysis, in 2016, 2900 thousand tonnes (kt) of polyurethane were produced in the United States and 920 kt were imported for consumption, 2000 kt entered the postconsumer waste streams, and 390 kt were recycled and returned to the market in the form of carpet underlayment. The domestic production of polyurethane consumed 1100 kt of crude oil and 1100 kt of natural gas. With the developed polyurethane flow map, we point out the limitation of the existing mechanical recycling methods and identify that glycolysis, a chemical recycling method, can be used to recycle the main components of postconsumer polyurethane waste. We also explore how targeting biobased pathways could influence the supply chain and downstream markets of polyurethane and reduce the consumption of fossil fuels and the exposure to toxic precursors in polyurethane production.


Asunto(s)
Petróleo , Administración de Residuos , Gas Natural , Poliuretanos , Reciclaje , Estados Unidos
5.
Environ Sci Technol ; 53(21): 12904-12913, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31609593

RESUMEN

Heavy-duty vehicles require expensive aftertreatment systems for control of emissions such as particulate matter (PM) and nitrogen oxides (NOx) to comply with stringent emission standards. Reduced engine-out emissions could potentially alleviate the emission control burden, and thus bring about reductions in the cost associated with aftertreatment systems, which translates into savings in vehicle ownership. This study evaluates potential reductions in manufacturing and operating costs of redesigned emission aftertreatment systems of line-haul heavy-duty diesel vehicles (HDDVs) with reduced engine-out emissions brought about by co-optimized fuel and engine technologies. Three emissions reduction cases representing conservative, medium, and optimistic engine-out emission reduction benefits are analyzed, compared to a reference case: the total costs of aftertreatment systems (TCA) of the three cases are reduced to $11,400(1.63 ¢/km), $9,100 (1.30 ¢/km), and $8,800 (1.26 ¢/km), respectively, compared to $12,000 (1.71 ¢/km) for the reference case. The largest potential reductions result from reduced diesel exhaust fluid (DEF) usage due to lower NOx emissions. Downsizing aftertreatment devices is not likely, because the sizes of devices are dependent on not only engine-out emissions, but also other factors such as engine displacement. Sensitivity analysis indicates that the price and usage of DEF have the largest impacts on TCA reduction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Análisis Costo-Beneficio , Gasolina , Vehículos a Motor , Material Particulado , Emisiones de Vehículos
6.
Environ Sci Technol ; 51(1): 733-741, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27976872

RESUMEN

Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.


Asunto(s)
Agricultura , Secuestro de Carbono , Carbono , Productos Agrícolas , Suelo , Estados Unidos
7.
Environ Sci Technol ; 48(24): 14624-31, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25380298

RESUMEN

Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Modelos Teóricos , Petróleo , Biomasa , Butanoles , Butileno Glicoles , Carbohidratos , Ambiente , Gases , Glicerol , Efecto Invernadero , Ácido Láctico/análogos & derivados , Glicoles de Propileno , Ácido Succínico , Transportes , Estados Unidos
8.
Environ Sci Technol ; 48(4): 2488-96, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24456539

RESUMEN

We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using high-resolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decision-making, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.


Asunto(s)
Contaminantes Atmosféricos/análisis , Biocombustibles/análisis , Conservación de los Recursos Naturales , Modelos Teóricos , Biomasa , Productos Agrícolas/química , Geografía , Poaceae/química , Procesos Estocásticos , Estados Unidos
9.
ACS Sustain Chem Eng ; 12(28): 10351-10362, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027727

RESUMEN

Shale gas is revolutionizing the U.S. energy and chemical commodity landscape and can ease the transition to a sustainable decarbonized economy. This work develops an equation-oriented (EO) multiscale modeling framework using the open-source IDAES-PSE platform that tractably incorporates microkinetic detail in process design via reduced-order kinetic (ROK) models. Using multiobjective optimization with embedded heat integration and life-cycle analysis, we simultaneously minimize the minimum selling price of liquid hydrocarbons (e.g., liquid fuels/additives from shale gas) and process emissions (via a CO2 tax). Optimization reduces greenhouse gas emissions per MJ of fuel produced by over 35% compared to the literature and achieves a carbon efficiency of 87%. The optimizer changes the recycling rate, temperatures, and pressures to mitigate the effect of ROK model-form uncertainty on product portfolio predictions. Moreover, we show that the optimal process design is insensitive to changing CO2 tax rates. Finally, the EO framework enables a fast sensitivity analysis of shale gas composition variability across 12 regions of the Eagle Ford basin. These results highlight the benefits of the open-source EO framework: fast, scalable, customized, and reproducible system analysis and optimization for sustainable energy technologies beyond shale utilization.

10.
Mater Horiz ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380318

RESUMEN

Printed electronics is a disruptive technology in multiple applications including environmental and biological sensors, flexible displays, and wearable diagnostic devices. With superlative electronic, optical, mechanical, and chemical properties, two-dimensional (2D) materials are promising candidates for printable electronic inks. While liquid-phase exfoliation (LPE) methods can produce electronic-grade 2D materials, conventional batch separation processes typically rely on centrifugation, which requires significant time and effort to remove incompletely exfoliated bulk powders, hindering the scale-up of 2D ink manufacturing. While cross-flow filtration (CFF) has emerged as a promising continuous flow separation method for solution-processed 2D nanosheets, previously demonstrated polymer CFF membranes necessitate low 2D nanosheet concentrations to avoid fouling, which ultimately limits mass throughput. Here, we demonstrate a fully flow-based, exfoliation-to-ink system for electronic-grade 2D materials using an integrated cross-flow separation and concentration system. To overcome the relatively low-throughput processing concentrations of incumbent polymer CFF membranes, we employ porous ceramic CFF membranes that are tolerant to 10-fold higher nanosheet concentrations and flow rates without compromising separation efficiency. Furthermore, we demonstrate a concentration method via cross-flow ultrafiltration, where the retentate can be directly formulated into printable inks with electronic-grade performance that meets or exceeds centrifugally produced inks. Life cycle assessment and technoeconomic analysis quantitatively confirm the advantages of ceramic versus polymer CFF membranes including reductions of 97%, 96%, 94%, and 93% for greenhouse gas emissions, water consumption, fossil fuel consumption, and specific production costs, respectively. Overall, this work presents an environmentally sustainable and cost-effective solution for the fabrication, separation, and printing of electronic-grade 2D materials.

11.
ACS Sustain Chem Eng ; 12(32): 12161-12170, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39148516

RESUMEN

Nonisocyanate polyurethanes (NIPUs) show promise as more sustainable alternatives to conventional isocyanate-based polyurethanes (PUs). In this study, polyhydroxyurethane (PHU) and nonisocyanate polythiourethane (NIPTU) production and reprocessing models inform the results of a techno-economic analysis and a life cycle assessment. The profitability of selling PHU and NIPTU is rationalized by identifying significant production costs, indicating that raw materials drive the costs of PHU and NIPTU production and reprocessing. After stepping along a path of process improvements, PHU and NIPTU can achieve minimum selling prices (MSPs) of 3.15 and 4.39 USD kg-1, respectively. Depolymerization yields need to be optimized, and polycondensation reactions need to be investigated for the reprocessing of NIPUs into secondary (2°) NIPUs. Of the NIPUs examined here, PHU has a low depolymerization yield and NIPTU has a high depolymerization yield. Fossil energy use, greenhouse gas (GHG) emissions, and water consumption are reported for the biobased production of PHU, NIPTU, 2° PHU, and 2° NIPTU and compared with baseline values for fossil-based PU production. There are options for reducing environmental impacts, which could make these pathways more sustainable. If barriers to implementation are overcome, 2° NIPUs can be manufactured at lower cost and environmental impacts than those of virgin NIPUs.

12.
Environ Sci Technol Lett ; 11(7): 654-663, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39006816

RESUMEN

Sustainable water management is essential to increasing water availability and decreasing water pollution. The wastewater sector is expanding globally and beginning to incorporate technologies that recover nutrients from wastewater. Nutrient recovery increases energy consumption but may reduce the demand for nutrients from virgin sources. We estimate the increase in annual global energy consumption (1,100 million GJ) and greenhouse gas emissions (84 million t CO2e) for wastewater treatment in the year 2030 compared to today's levels to meet sustainable development goals. To capture these trends, integrated assessment and computable general equilibrium models that address the energy-water nexus must evolve. We reviewed 16 of these models to assess how well they capture wastewater treatment plant energy consumption and GHG emissions. Only three models include biogas production from the wastewater organic content. Four explicitly represent energy demand for wastewater treatment, and eight include explicit representation of wastewater treatment plant greenhouse gas emissions. Of those eight models, six models quantify methane emissions from treatment, five include representation of emissions of nitrous oxide, and two include representation of emissions of carbon dioxide. Our review concludes with proposals to improve these models to better capture the energy-water nexus associated with the evolving wastewater treatment sector.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39392856

RESUMEN

The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass Miscanthus × giganteus as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 104 S m-1. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 µm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.

14.
J Am Coll Surg ; 236(2): 411-423, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648269

RESUMEN

BACKGROUND: Operating rooms are major contributors to a hospital's carbon footprint due to the large volumes of resources consumed and waste produced. The objective of this study was to identify quality improvement initiatives that aimed to reduce the environmental impact of the operating room while decreasing costs. STUDY DESIGN: A literature search was performed using PubMed, Scopus, CINAHL, and Google Scholar and included broad terms for "operating room," "costs," and "environment" or "sustainability." The "triple bottom line" framework, which considers the environmental, financial, and social impacts of interventions to guide decision making, was used to inform data extraction. The studies were then categorized using the 5 "Rs" of sustainability-refuse, reduce, reuse, repurpose, and recycle-and the impacts were discussed using the triple bottom line framework. RESULTS: A total of 23 unique quality improvement initiatives describing 28 interventions were included. Interventions were categorized as "refuse" (n = 11; 39.3%), "reduce" (n = 8; 28.6%), "reuse" (n = 3; 10.7%), and "recycle" (n = 6; 21.4%). While methods of measuring environmental impact and cost savings varied greatly among studies, potential annual cost savings ranged from $873 (intervention: education on diverting recyclable materials from sharps containers; environmental impact: 11.4 kg sharps waste diverted per month) to $694,141 (intervention: education to reduce regulated medical waste; environmental impact: 30% reduction in regulated medical waste). CONCLUSIONS: Quality improvement initiatives that reduce both cost and environmental impact have been successfully implemented across a variety of centers both nationally and globally. Surgeons, healthcare practitioners, and administrators interested in environmental stewardship and working toward a culture of sustainability may consider similar interventions in their institutions.


Asunto(s)
Residuos Sanitarios , Quirófanos , Humanos , Ahorro de Costo , Mejoramiento de la Calidad , Ambiente , Residuos Sanitarios/prevención & control
15.
Adv Mater ; 35(24): e2212042, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934307

RESUMEN

Solution-processed graphene is a promising material for numerous high-volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid-phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy-intensive and limits scalable manufacturing. Here, cross-flow filtration (CFF) is introduced as a centrifuge-free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno-economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic-grade graphene, CFF-processed graphene nanosheets are formulated into printable inks, leading to state-of-the-art thin-film conductivities exceeding 104 S m-1 . This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials.

16.
Environ Sci Technol ; 46(22): 12704-10, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23075406

RESUMEN

This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.


Asunto(s)
Contaminantes Atmosféricos/análisis , Suministros de Energía Eléctrica , Gases/análisis , Litio/química , Manganeso/química , Óxidos/química , Reciclaje/métodos , Automóviles , Monitoreo del Ambiente , Efecto Invernadero , Modelos Teóricos , Sensibilidad y Especificidad , Estados Unidos
17.
Environ Sci Technol ; 46(2): 619-27, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22107036

RESUMEN

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.


Asunto(s)
Contaminantes Atmosféricos/química , Carbón Mineral/análisis , Efecto Invernadero , Metano/química , Gas Natural/análisis , Petróleo/análisis , Monitoreo del Ambiente/métodos , Industria Procesadora y de Extracción , Factores de Tiempo
18.
Biotechnol Lett ; 34(12): 2259-63, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086569

RESUMEN

Enzymes and yeast are important ingredients in the production of ethanol, yet the energy consumption and emissions associated with their production are often excluded from life-cycle analyses of ethanol. We provide new estimates for the energy consumed and greenhouse gases (GHGs) emitted during enzyme and yeast manufacture, including contributions from key ingredients such as starch, glucose, and molasses. We incorporated these data into Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model and observed that enzymes and yeast together contribute 1.4 and 27 % of farm-to-pump GHG emissions for corn and cellulosic ethanol, respectively. Over the course of the entire corn ethanol life cycle, yeast and enzymes contribute a negligible amount of GHG emissions, but increase GHG emissions from the cellulosic ethanol life cycle by 5.6 g CO(2)e/MJ.


Asunto(s)
Dióxido de Carbono/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Levaduras/enzimología , Levaduras/metabolismo , Zea mays/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Melaza , Almidón/metabolismo
19.
ACS Eng Au ; 2(3): 248-256, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781934

RESUMEN

The United States is unique in the energy reserves held in shale gas fields, which coproduce natural gas and natural gas liquids. Use of this resource, however, contributes to greenhouse gas emissions and, correspondingly, climate change. We explore how natural gas and natural gas liquids might build bridges toward low-carbon transportation fuels. For example, as petroleum refineries produce less gasoline in response to widespread electrification, natural gas liquids can be converted to fuel. We consider whether the greenhouse gas emissions from production and use of these fuels might be offset through three potential outcomes of converting coproduced natural gas to CO2 through steam methane reforming. First, the CO2 could be injected into conventional oil formations for enhanced oil recovery. Second, it could be sequestered into saline aquifers to avoid CO2 emissions from the produced oil combustion. Third, it could be injected into unconventional gas formations in the form of CO2-based fracturing fluids. Simultaneously, the coproduced hydrogen from steam methane reforming could be used to support the expansion of the hydrogen economy. The region of study is the Permian Basin. The results show sizeable emission benefits by decreasing net emissions of natural gas production and use to 28 from 88 g-CO2e/MJ. For revenue generating pathways, a partial decarbonization of 3.4 TCF/year is possible. All of the natural gas can be partially decarbonized if the CO2 is sequestered in saline aquifers. Overall, the results show that while greenhouse gas emissions can be reduced through decarbonization approaches relying on subsurface sequestration, full natural gas decarbonization is not achieved but must be pursued through other approaches.

20.
Waste Manag ; 153: 81-88, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055178

RESUMEN

Pyrolysis is a leading technology to convert non-recyclable plastic waste to fuels or chemicals. As interest in the circular economy grows, the latter option has seemingly become more attractive. Once waste plastic is pyrolyzed to, for example, naphtha, however, additional steps are required to produce a polymer product. These steps consume additional energy and water and emit greenhouse gases (GHG). It is unclear whether this more circular option of non-recyclable plastics to virgin plastics offers environmental benefits, compared to their conversion to fuels. We therefore examine whether it is possible to determine the best use of pyrolyzing non-recyclable plastic - fuels or chemicals (low-density polyethylene (LDPE) as product)- from a life cycle perspective. We use recently published life cycle assessments of non-recycled plastics pyrolysis and consider two functional units: per unit mass of non-recyclable plastics and per unit product - MJ of naphtha or kg of LDPE. In the U.S., on a cradle-to-gate, per unit mass waste basis, producing fuel is lower-emitting than producing LDPE from pyrolysis. The opposite is true in the EU. But expanding the system boundary to the grave results in LDPE as the lower-emitting product in both regions. Naphtha and LDPE produced from non-recyclable plastics are less GHG-intensive than conventional routes to these products. Fossil fuel and water consumption and waste generation are all lower in the P2F case. Our results highlight that prioritization of P2P and P2F may depend on regional characteristics such as conventional waste management techniques and water scarcity.


Asunto(s)
Gases de Efecto Invernadero , Plásticos , Alcanos , Animales , Combustibles Fósiles , Estadios del Ciclo de Vida , Polietileno , Pirólisis , Reciclaje , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA