Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252964

RESUMEN

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Asunto(s)
Fibrilina-1 , Síndrome de Marfan , Animales , Ratones , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Biol Chem ; 296: 100548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33741344

RESUMEN

The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.


Asunto(s)
Glucosa/metabolismo , Recombinación Homóloga , Microcuerpos/enzimología , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Trypanosoma brucei brucei/metabolismo , Células Cultivadas , Flavinas/metabolismo , Succinato Deshidrogenasa/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
4.
Hepatology ; 74(3): 1595-1610, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33754354

RESUMEN

BACKGROUND AND AIMS: Through an exploratory proteomic approach based on typical hepatocellular adenomas (HCAs), we previously identified a diagnostic biomarker for a distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. We hypothesized that the whole protein expression deregulation profile could deliver much more informative data for tumor characterization. Therefore, we pursued our analysis with the characterization of HCA proteomic profiles, evaluating their correspondence with the established genotype/phenotype classification and assessing whether they could provide added diagnosis and prognosis values. APPROACH AND RESULTS: From a collection of 260 cases, we selected 52 typical cases of all different subgroups on which we built a reference HCA proteomics database. Combining laser microdissection and mass-spectrometry-based proteomic analysis, we compared the relative protein abundances between tumoral (T) and nontumoral (NT) liver tissues from each patient and we defined a specific proteomic profile of each of the HCA subgroups. Next, we built a matching algorithm comparing the proteomic profile extracted from a patient with our reference HCA database. Proteomic profiles allowed HCA classification and made diagnosis possible, even for complex cases with immunohistological or genomic analysis that did not lead to a formal conclusion. Despite a well-established pathomolecular classification, clinical practices have not substantially changed and the HCA management link to the assessment of the malignant transformation risk remains delicate for many surgeons. That is why we also identified and validated a proteomic profile that would directly evaluate malignant transformation risk regardless of HCA subtype. CONCLUSIONS: This work proposes a proteomic-based machine learning tool, operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient management for HCAs.


Asunto(s)
Adenoma de Células Hepáticas/metabolismo , Neoplasias Hepáticas/metabolismo , Adenoma de Células Hepáticas/clasificación , Adenoma de Células Hepáticas/complicaciones , Adenoma de Células Hepáticas/genética , Adolescente , Adulto , Carcinogénesis , Bases de Datos Factuales , Femenino , Hemorragia/etiología , Humanos , Neoplasias Hepáticas/clasificación , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proteómica , Medición de Riesgo , Adulto Joven
5.
Nature ; 539(7630): 555-559, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27828947

RESUMEN

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Asunto(s)
Cannabinoides/efectos adversos , Trastornos de la Memoria/inducido químicamente , Memoria/efectos de los fármacos , Memoria/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Cannabinoides/metabolismo , Respiración de la Célula/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
6.
Environ Microbiol ; 23(4): 2293-2314, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538395

RESUMEN

The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.


Asunto(s)
Botrytis , Proteómica , Biomasa , Botrytis/genética , Proteínas Fúngicas/genética , Enfermedades de las Plantas , Plantas
7.
Eur Respir J ; 58(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33833033

RESUMEN

BACKGROUND: Bronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since mitochondria produce the highest levels of cellular energy and fatty acid ß-oxidation is the most powerful way to produce ATP, we hypothesised that, in asthmatic BSM cells, energetic metabolism is shifted towards the ß-oxidation of fatty acids. OBJECTIVES: We aimed to characterise BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation. METHODS: 21 asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using matrix-assisted laser desorption/ionisation spectrometry imaging. RESULTS: Asthmatic BSM cells were characterised by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial ß-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via two canonical mitochondrial pathways. The levels of carnitine palmitoyl transferase (CPT)2 and low-density lipoprotein (LDL) receptor, which internalise fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL receptor drastically and specifically reduced asthmatic BSM cell proliferation. CONCLUSION: This study demonstrates a metabolic switch towards mitochondrial ß-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.


Asunto(s)
Asma , Proteómica , Asma/metabolismo , Bronquios , Ácidos Grasos/metabolismo , Humanos , Músculo Liso , Oxidación-Reducción
8.
Liver Int ; 41(6): 1423-1429, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792165

RESUMEN

Previous studies have shown that Reptin is overexpressed in hepatocellular carcinoma and that it is necessary for in vitro proliferation and cell survival. However, its pathophysiological role in vivo remains unknown. We aimed to study the role of Reptin in hepatocyte proliferation after regeneration using a liver Reptin knock-out model (ReptinLKO ). Interestingly, hepatocyte proliferation is strongly impaired in ReptinLKO mice 36 h after partial hepatectomy, associated with a decrease of cyclin-A expression and mTORC1 and MAPK signalling, leading to an impaired liver regeneration. Moreover, in the ReptinLKO model, we have observed a progressive loss of Reptin invalidation associated with an atypical liver regeneration. Hypertrophic and proliferative hepatocytes gradually replace ReptinKO hypotrophic hepatocytes. To conclude, our results show that Reptin is required for hepatocyte proliferation in vivo and liver regeneration and that it plays a crucial role in hepatocyte survival and liver homeostasis.


Asunto(s)
Hepatocitos , Regeneración Hepática , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Proliferación Celular , ADN Helicasas , Hepatectomía , Homeostasis , Hígado , Ratones , Ratones Endogámicos C57BL
9.
Nucleic Acids Res ; 47(6): 2739-2756, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30759257

RESUMEN

G-quadruplex ligands exert their antiproliferative effects through telomere-dependent and telomere-independent mechanisms, but the inter-relationships among autophagy, cell growth arrest and cell death induced by these ligands remain largely unexplored. Here, we demonstrate that the G-quadruplex ligand 20A causes growth arrest of cancer cells in culture and in a HeLa cell xenografted mouse model. This response is associated with the induction of senescence and apoptosis. Transcriptomic analysis of 20A treated cells reveals a significant functional enrichment of biological pathways related to growth arrest, DNA damage response and the lysosomal pathway. 20A elicits global DNA damage but not telomeric damage and activates the ATM and autophagy pathways. Loss of ATM following 20A treatment inhibits both autophagy and senescence and sensitizes cells to death. Moreover, disruption of autophagy by deletion of two essential autophagy genes ATG5 and ATG7 leads to failure of CHK1 activation by 20A and subsequently increased cell death. Our results, therefore, identify the activation of ATM by 20A as a critical player in the balance between senescence and apoptosis and autophagy as one of the key mediators of such regulation. Thus, targeting the ATM/autophagy pathway might be a promising strategy to achieve the maximal anticancer effect of this compound.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , G-Cuádruplex , Neoplasias/patología , Células A549 , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Autofagia/genética , Línea Celular Tumoral , Senescencia Celular/genética , Daño del ADN/efectos de los fármacos , Células HeLa , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
PLoS Pathog ; 14(11): e1007412, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30383867

RESUMEN

The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues.


Asunto(s)
Glicerol/metabolismo , Trypanosoma brucei brucei/metabolismo , Tejido Adiposo/metabolismo , Línea Celular/metabolismo , Medios de Cultivo/química , Gluconeogénesis , Glucosa/metabolismo , Glucólisis , Metabolómica , Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Espectrometría de Masas en Tándem/métodos , Trypanosoma brucei brucei/patogenicidad
11.
Liver Int ; 40(1): 240-251, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31612616

RESUMEN

BACKGROUND: Therapeutic outcomes using the multikinase inhibitors, sorafenib and regorafenib, remain unsatisfactory for patients with advanced hepatocellular carcinoma (HCC). Thus, new drug modalities are needed. We recently reported the remarkable capacity of miR-4510 to impede the growth of HCC and hepatoblastoma through Glypican-3 (GPC3) targeting and Wnt pathway inactivation. METHODS: To identify new targets of miR-4510, we used a label-free proteomic approach and reported down-regulation of RAF proto-oncogene serine/threonine-protein kinase (RAF1) by miR-4510. Because the tumourigenic role of RAF1 in HCC is controversial, we further studied RAF1:miR-4510 interactions using cellular, molecular as well as functional approaches and a chicken chorioallantoic membrane (CAM) xenograft model. RESULTS: We found an increase in RAF1 protein in 59.3% of HCC patients and a specific up-regulation of its transcript in proliferative tumours. We showed that miR-4510 inactivates the RAS/RAF/MEK/ERK pathway and reduces the expression of downstream targets (ie c-Fos proto-oncogene [FOS]) through RAF1 direct targeting. At a cellular level, miR-4510 inhibited HCC cell proliferation and migration and induced senescence in part by lowering RAF1 messenger RNA (mRNA) and protein expression. Finally, we confirmed the pro-tumoural function of RAF1 protein in HCC cells and its ability to sustain HCC tumour progression in vitro and in vivo. CONCLUSIONS: In this work, we confirm that RAF1 acts as an oncogene in HCC and further demonstrate that miR-4510 acts as a strong tumour suppressor in the liver by targeting many proto-oncogenes, including GPC3 and RAF1, and subsequently controlling key biological and signalling pathways among which Wnt and RAS/RAF/MEK/ERK signals.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glipicanos/metabolismo , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Pollos , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glipicanos/genética , Humanos , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Proto-Oncogenes Mas , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Hum Mol Genet ; 26(4): 674-685, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007911

RESUMEN

Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.


Asunto(s)
Núcleo Celular , GTP Fosfohidrolasas , Proteínas Asociadas a Microtúbulos , Mitocondrias , Proteínas Mitocondriales , Neuronas/metabolismo , Paraplejía Espástica Hereditaria , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Dinaminas , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/patología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología
13.
Hepatology ; 66(6): 2016-2028, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28646562

RESUMEN

Hepatocellular adenomas (HCAs) are rare benign tumors divided into three main subgroups defined by pathomolecular features, HNF1A (H-HCA), mutated ß-catenin (b-HCA), and inflammatory (IHCA). In the case of unclassified HCAs (UHCAs), which are currently identified by default, a high risk of bleeding remains a clinical issue. The objective of this study was to explore UHCA proteome with the aim to identify specific biomarkers. Following dissection of the tumoral (T) and nontumoral (NT) tissue on formalin-fixed, paraffin-embedded HCA tissue sections using laser capture methodology, we performed mass spectrometry analysis to compare T and NT protein expression levels in H-HCA, IHCA, b-HCA, UHCA, and focal nodular hyperplasia. Using this methodology, we searched for proteins which are specifically deregulated in UHCA. We demonstrate that proteomic profiles allow for discriminating known HCA subtypes through identification of classical biomarkers in each HCA subgroup. We observed specific up-regulation of the arginine synthesis pathway associated with overexpression of argininosuccinate synthase (ASS1) and arginosuccinate lyase in UHCA. ASS1 immunohistochemistry identified all the UHCA, of which 64.7% presented clinical bleeding manifestations. Interestingly, we demonstrated that the significance of ASS1 was not restricted to UHCA, but also encompassed certain hemorrhagic cases in other HCA subtypes, particularly IHCA. CONCLUSION: ASS1 + HCA combined with a typical hematoxylin and eosin stain aspect defined a new HCA subgroup at a high risk of bleeding. (Hepatology 2017;66:2016-2028).


Asunto(s)
Adenoma de Células Hepáticas/metabolismo , Argininosuccinato Sintasa/metabolismo , Neoplasias Hepáticas/metabolismo , Adenoma de Células Hepáticas/complicaciones , Adenoma de Células Hepáticas/patología , Adulto , Arginina/biosíntesis , Biomarcadores de Tumor/metabolismo , Estudios de Cohortes , Femenino , Hemorragia/etiología , Humanos , Captura por Microdisección con Láser , Hígado/patología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Espectrometría de Masas , Persona de Mediana Edad , Proteoma
14.
BMC Genomics ; 18(1): 635, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821226

RESUMEN

BACKGROUND: Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. RESULTS: We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. CONCLUSIONS: The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control.


Asunto(s)
Aedes/metabolismo , Arbovirus/fisiología , Proteómica , Wolbachia/fisiología , Aedes/microbiología , Aedes/virología , Animales , Línea Celular
15.
Retrovirology ; 14(1): 39, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754126

RESUMEN

BACKGROUND: Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. RESULTS: Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. CONCLUSIONS: Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.


Asunto(s)
Cromatina/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Chaperonas de Histonas/metabolismo , Interacciones Huésped-Patógeno , Integración Viral/fisiología , Células Cultivadas , Ensamble y Desensamble de Cromatina/fisiología , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Nucleosomas/metabolismo , Unión Proteica
16.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25652260

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/genética , Transcripción Genética/fisiología , Respuesta de Proteína Desplegada/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteómica/métodos , Interferencia de ARN , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina
17.
Proteomics ; 16(9): 1386-97, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26900021

RESUMEN

Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 µM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930).


Asunto(s)
Adaptación Fisiológica/genética , Agrostis/efectos de los fármacos , Sulfato de Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/efectos de los fármacos , Proteoma/genética , Agrostis/genética , Agrostis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Clorofila A , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Solubilidad , Estrés Fisiológico
18.
J Exp Bot ; 66(21): 6665-78, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26208648

RESUMEN

The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are critical for the function of the secretory pathway. The SNARE Memb11 is involved in membrane trafficking at the ER-Golgi interface. The aim of the work was to decipher molecular mechanisms acting in Memb11-mediated ER-Golgi traffic. In mammalian cells, the orthologue of Memb11 (membrin) is potentially involved in the recruitment of the GTPase Arf1 at the Golgi membrane. However molecular mechanisms associated to Memb11 remain unknown in plants. Memb11 was detected mainly at the cis-Golgi and co-immunoprecipitated with Arf1, suggesting that Arf1 may interact with Memb11. This interaction of Memb11 with Arf1 at the Golgi was confirmed by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was found to be specific to Memb11 as compared to either Memb12 or Sec22. Using a structural bioinformatic approach, several sequences in the N-ter part of Memb11 were hypothesized to be critical for this interaction and were tested by BiFC on corresponding mutants. Finally, by using both in vitro and in vivo approaches, we determined that only the GDP-bound form of Arf1 interacts with Memb11. Together, our results indicate that Memb11 interacts with the GDP-bound form of Arf1 in the Golgi apparatus.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Aparato de Golgi/metabolismo , Proteínas Qb-SNARE/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Qb-SNARE/metabolismo , Factores de Transcripción/metabolismo
19.
Proteomics ; 14(15): 1746-58, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24842164

RESUMEN

Differential expression of soluble proteins was explored in roots of metallicolous (M) and non-M (NM) plants of Agrostis capillaris L. exposed to increasing Cu to partially identify molecular mechanisms underlying higher Cu tolerance in M plants. Plants were cultivated for 2 months on perlite with a CuSO4 (1-30 µM) spiked-nutrient solution. Soluble proteins extracted by the trichloroacetic acid/acetone procedure were separated with 2DE (linear 4-7 pH gradient). After Coomassie Blue staining and image analysis, 19 proteins differentially expressed were identified using LC-MS/MS and Expressed Sequence Tag (ESTs) databases. At supra-optimal Cu exposure (15-30 µM), glycolysis was likely altered in NM roots with increased production of glycerone-P and methylglyoxal based on overexpression of triosephosphate isomerase and fructose bisphosphate aldolase. Changes in tubulins and higher expressions of 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase and S-adenosylmethionine synthase underpinned impacts on the cytoskeleton and stimulation of ethylene metabolism. Increased l-methionine and S-adenosylmethionine amounts may also facilitate production of nicotianamine, which complexes Cu, and of l-cysteine, needed for metallothioneins and GSH. In M roots, the increase of [Cu/Zn] superoxide dismutase suggested a better detoxification of superoxide, when Cu exposure rose. Higher Cu-tolerance of M plants would rather result from simultaneous cooperation of various processes than from a specific mechanism.


Asunto(s)
Agrostis/fisiología , Cobre/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteoma/efectos de los fármacos , Adaptación Fisiológica , Agrostis/química , Agrostis/metabolismo , Electroforesis en Gel Bidimensional , Proteínas de Plantas/química , Raíces de Plantas/química , Proteoma/análisis , Proteoma/química , Proteómica , Solubilidad
20.
Adv Healthc Mater ; 13(6): e2303370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37942849

RESUMEN

Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.


Asunto(s)
Bioimpresión , Femenino , Embarazo , Humanos , Células Endoteliales , Placenta , Amnios , Membrana Basal , Materiales Biocompatibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA