Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768911

RESUMEN

Thyroid hormones (TH) are essential for normal brain development, influencing neural cell differentiation, migration, and synaptogenesis. Multiple endocrine-disrupting chemicals (EDCs) are found in the environment, raising concern for their potential effects on TH signaling and the consequences on neurodevelopment and behavior. While most research on EDCs investigates the effects of individual chemicals, human health may be adversely affected by a mixture of chemicals. The potential consequences of EDC exposure on human health are far-reaching and include problems with immune function, reproductive health, and neurological development. We hypothesized that embryonic exposure to a mixture of chemicals (containing phenols, phthalates, pesticides, heavy metals, and perfluorinated, polychlorinated, and polybrominated compounds) identified as commonly found in the human amniotic fluid could lead to altered brain development. We assessed its effect on TH signaling and neurodevelopment in an amphibian model (Xenopus laevis) highly sensitive to thyroid disruption. Fertilized eggs were exposed for eight days to either TH (thyroxine, T4 10 nM) or the amniotic mixture (at the actual concentration) until reaching stage NF47, where we analyzed gene expression in the brains of exposed tadpoles using both RT-qPCR and RNA sequencing. The results indicate that whilst some overlap on TH-dependent genes exists, T4 and the mixture have different gene signatures. Immunohistochemistry showed increased proliferation in the brains of T4-treated animals, whereas no difference was observed for the amniotic mixture. Further, we demonstrated diminished tadpoles' motility in response to T4 and mixture exposure. As the individual chemicals composing the mixture are considered safe, these results highlight the importance of examining the effects of mixtures to improve risk assessment.


Asunto(s)
Líquido Amniótico , Disruptores Endocrinos , Humanos , Animales , Xenopus laevis/metabolismo , Líquido Amniótico/metabolismo , Hormonas Tiroideas/metabolismo , Encéfalo/metabolismo , Disruptores Endocrinos/farmacología , Expresión Génica , Larva/metabolismo
2.
BMC Genomics ; 23(1): 485, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780080

RESUMEN

Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.


Asunto(s)
Apicomplexa , Animales , Apicomplexa/genética , Crustáceos/genética , Genoma , Humanos , Invertebrados/genética , Filogenia
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430192

RESUMEN

Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of Xenopus tropicalis tadpoles using RNA-Seq. Among the differentially expressed genes (DE), 70.5% were regulated by TH only, 0.87% by GC only, and 15% by crosstalk between the two hormones. Gene ontology analysis of the crosstalk-regulated genes identified terms referring to DNA replication, DNA repair, and cell-cycle regulation. Biological network analysis identified groups of genes targeted by the hormonal crosstalk and corroborated the gene ontology analysis. Specifically, we found two groups of functionally linked genes (chains) mainly composed of crosstalk-regulated hubs (highly interactive genes), and a large subnetwork centred around the crosstalk-regulated genes psmb6 and cdc7. Most of the genes in the chains are involved in cell-cycle regulation, as are psmb6 and cdc7, which regulate the G2/M transition. Thus, the biological action of these two hormonal pathways acting together in the liver targets cell-cycle regulation.


Asunto(s)
Hígado , Hormonas Tiroideas , Animales , Larva/genética , Larva/metabolismo , Xenopus/genética , Xenopus/metabolismo , Hormonas Tiroideas/metabolismo , Hígado/metabolismo , Proliferación Celular , Corticoesteroides
4.
Mol Biol Evol ; 34(1): 66-77, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744410

RESUMEN

Bivalves have evolved a range of complex shell forming mechanisms that are reflected by their incredible diversity in shell mineralogy and microstructures. A suite of proteins exported to the shell matrix space plays a significant role in controlling these features, in addition to underpinning some of the physical properties of the shell itself. Although, there is a general consensus that a minimum basic protein tool kit is required for shell construction, to date, this remains undefined. In this study, the shell matrix proteins (SMPs) of four highly divergent bivalves (The Pacific oyster, Crassostrea gigas; the blue mussel, Mytilus edulis; the clam, Mya truncata, and the king scallop, Pecten maximus) were analyzed in an identical fashion using proteomics pipeline. This enabled us to identify the critical elements of a "basic tool kit" for calcification processes, which were conserved across the taxa irrespective of the shell morphology and arrangement of the crystal surfaces. In addition, protein domains controlling the crystal layers specific to aragonite and calcite were also identified. Intriguingly, a significant number of the identified SMPs contained domains related to immune functions. These were often are unique to each species implying their involvement not only in immunity, but also environmental adaptation. This suggests that the SMPs are selectively exported in a complex mix to endow the shell with both mechanical protection and biochemical defense.


Asunto(s)
Adaptación Fisiológica/fisiología , Exoesqueleto/fisiología , Bivalvos/fisiología , Calcificación Fisiológica/fisiología , Aclimatación , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Exoesqueleto/metabolismo , Animales , Bivalvos/genética , Bivalvos/metabolismo , Calcificación Fisiológica/genética , Bases de Datos de Proteínas , Variación Genética , Proteoma/metabolismo , Proteómica/métodos
5.
Hum Mol Genet ; 25(1): 97-108, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512061

RESUMEN

Dlx5 and Dlx6 are two closely associated homeobox genes which code for transcription factors involved in the control of steroidogenesis and reproduction. Inactivation of Dlx5/6 in the mouse results in a Leydig cell defect in the male and in ovarian insufficiency in the female. DLX5/6 are also strongly expressed by the human endometrium but their function in the uterus is unknown. The involvement of DLX5/6 in human uterine pathology is suggested by their strong downregulation in endometriotic lesions and upregulation in endometrioïd adenocarcinomas. We first show that Dlx5/6 expression begins in Müllerian ducts epithelia and persists then in the uterine luminal and glandular epithelia throughout post-natal maturation and in the adult. We then use a new mouse model in which Dlx5 and Dlx6 can be simultaneously inactivated in the endometrium using a Pgr(cre/+) allele. Post-natal inactivation of Dlx5/6 in the uterus results in sterility without any obvious ovarian involvement. The uteri of Pgr(cre/+); Dlx5/6(flox/flox) mice present very few uterine glands and numerous abnormally large and branched invaginations of the uterine lumen. In Dlx5/6 mutant uteri, the expression of genes involved in gland formation (Foxa2) and in epithelial remodelling during implantation (Msx1) is significantly reduced. Furthermore, we show that DLX5 is highly expressed in human endometrial glandular epithelium and that its expression is affected in endometriosis. We conclude that Dlx5 and Dlx6 expression determines uterine architecture and adenogenesis and is needed for implantation. Given their importance for female reproduction, DLX5 and DLX6 must be regarded as interesting targets for future clinical research.


Asunto(s)
Endometriosis/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Útero/crecimiento & desarrollo , Animales , Implantación del Embrión , Endometriosis/metabolismo , Epitelio/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/fisiología , Ratones , Transcriptoma , Útero/metabolismo
6.
PLoS Genet ; 11(4): e1005154, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25902052

RESUMEN

Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3' regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Retroalimentación Fisiológica , Genoma de Planta , Factores de Transcripción/genética , Arabidopsis , Proteínas de Arabidopsis/biosíntesis , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Citosina , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/biosíntesis , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Mutación , Factores de Transcripción/biosíntesis
7.
Environ Microbiol ; 19(3): 909-925, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27236063

RESUMEN

Salinity regimes in estuaries and coastal areas vary with river discharge patterns, seawater evaporation, the morphology of the coastal waterways and the dynamics of marine water mixing. Therefore, microalgae have to respond to salinity variations at time scales ranging from daily to annual cycles. Microalgae may also have to adapt to physical alterations that induce the loss of connectivity between habitats and the enclosure of bodies of water. Here, we integrated physiological assays and measurements of morphological plasticity with a functional genomics approach to examine the regulatory changes that occur during the acclimation to salinity in the estuarine diatom Thalassiosira weissflogii. We found that cells exposed to different salinity regimes for a short or long period presented adjustments in their carbon fractions, silicon pools, pigment concentrations and/or photosynthetic parameters. Salinity-induced alterations in frustule symmetry were observed only in the long-term (LT) cultures. Whole transcriptome analyses revealed a down-regulation of nuclear and plastid encoded genes during the LT response and identified only a few regulated genes that were in common between the ST and LT responses. We propose that in diatoms, one strategy for acclimating to salinity gradients and maintaining optimal cellular fitness could be a reduction in the cost of transcription.


Asunto(s)
Aclimatación , Diatomeas/fisiología , Transcriptoma , Aclimatación/fisiología , Carbono , Diatomeas/genética , Regulación hacia Abajo , Estuarios , Fotosíntesis/fisiología , Salinidad , Agua de Mar , Silicio
8.
EMBO J ; 30(10): 1928-38, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21487388

RESUMEN

Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.


Asunto(s)
Arabidopsis/fisiología , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromosomas/metabolismo , Metilación de ADN , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
9.
Proc Natl Acad Sci U S A ; 109(40): 16240-5, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988127

RESUMEN

The rate of meiotic crossing over (CO) varies considerably along chromosomes, leading to marked distortions between physical and genetic distances. The causes underlying this variation are being unraveled, and DNA sequence and chromatin states have emerged as key factors. However, the extent to which the suppression of COs within the repeat-rich pericentromeric regions of plant and mammalian chromosomes results from their high level of DNA polymorphisms and from their heterochromatic state, notably their dense DNA methylation, remains unknown. Here, we test the combined effect of removing sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombination landscape of an Arabidopsis mapping population. To do so, we use genome-wide DNA methylation data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to derive a recombination map based on 126 meiotically stable, differentially methylated regions covering 81.9% of the genome. We demonstrate that the suppression of COs within pericentromeric regions of chromosomes persists in this experimental setting. Moreover, suppression is reinforced within 3-Mb regions flanking pericentromeric boundaries, and this effect appears to be compensated by increased recombination activity in chromosome arms. A direct comparison with 17 classical Arabidopsis crosses shows that these recombination changes place the epiRILs at the boundary of the range of natural variation but are not severe enough to transgress that boundary significantly. This level of robustness is remarkable, considering that this population represents an extreme with key recombination barriers having been forced to a minimum.


Asunto(s)
Arabidopsis/genética , Intercambio Genético/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Variación Genética , Cruzamientos Genéticos , Perfilación de la Expresión Génica
10.
Bioinformatics ; 28(23): 3147-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23044543

RESUMEN

SUMMARY: Non-coding RNA (ncRNA) PROfiling in small RNA (sRNA)-seq (ncPRO-seq) is a stand-alone, comprehensive and flexible ncRNA analysis pipeline. It can interrogate and perform detailed profiling analysis on sRNAs derived from annotated non-coding regions in miRBase, Rfam and RepeatMasker, as well as specific regions defined by users. The ncPRO-seq pipeline performs both gene-based and family-based analyses of sRNAs. It also has a module to identify regions significantly enriched with short reads, which cannot be classified under known ncRNA families, thus enabling the discovery of previously unknown ncRNA- or small interfering RNA (siRNA)-producing regions. The ncPRO-seq pipeline supports input read sequences in fastq, fasta and color space format, as well as alignment results in BAM format, meaning that sRNA raw data from the three current major platforms (Roche-454, Illumina-Solexa and Life technologies-SOLiD) can be analyzed with this pipeline. The ncPRO-seq pipeline can be used to analyze read and alignment data, based on any sequenced genome, including mammals and plants. AVAILABILITY: Source code, annotation files, manual and online version are available at http://ncpro.curie.fr/. CONTACT: bioinfo.ncproseq@curie.fr or cciaudo@ethz.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , ARN Interferente Pequeño/genética , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Secuencia de Bases , Internet , Alineación de Secuencia
11.
J Mol Biol ; 434(7): 167497, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189129

RESUMEN

The artificial 601 DNA sequence is often used to constrain the position of nucleosomes on a DNA molecule in vitro. Although the ability of the 147 base pair sequence to precisely position a nucleosome in vitro is well documented, application of this property in vivo has been explored only in a few studies and yielded contradictory conclusions. Our goal in the present study was to test the ability of the 601 sequence to dictate nucleosome positioning in Saccharomyces cerevisiae in the context of a long tandem repeat array inserted in a yeast chromosome. We engineered such arrays with three different repeat size, namely 167, 197 and 237 base pairs. Although our arrays are able to position nucleosomes in vitro, analysis of nucleosome occupancy in vivo revealed that nucleosomes are not preferentially positioned as expected on the 601-core sequence along the repeats and that the measured nucleosome repeat length does not correspond to the one expected by design. Altogether our results demonstrate that the rules defining nucleosome positions on this DNA sequence in vitro are not valid in vivo, at least in this chromosomal context, questioning the relevance of using the 601 sequence in vivo to achieve precise nucleosome positioning on designer synthetic DNA sequences.


Asunto(s)
Nucleosomas , Saccharomyces cerevisiae , Secuencias Repetidas en Tándem , Ensamble y Desensamble de Cromatina , ADN de Hongos/genética , ADN de Hongos/metabolismo , Ingeniería Genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias Repetidas en Tándem/genética
12.
Nat Commun ; 11(1): 1509, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198346

RESUMEN

Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2'-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations.


Asunto(s)
2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacología , Codón sin Sentido/efectos de los fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Mutación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes p53/genética , Células HEK293 , Células HeLa , Humanos , Lepisma/química , Ratones , Ratones Desnudos , ARN de Transferencia/genética , ARNt Metiltransferasas/metabolismo
13.
Sci Rep ; 9(1): 19696, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873127

RESUMEN

Energy imbalance due to excess of calories is considered to be a major player in the current worldwide obesity pandemic and could be accompanied by systemic and central inflammation and mitochondrial dysfunctions. This hypothesis was tested by comparing the wild-derived diet-induced obesity- (DIO-) resistant mouse strain WSB/EiJ to the obesity-prone C57BL/6J strain. We analysed circulating and hypothalamic markers of inflammatory status and hypothalamic mitochondrial activity in both strains exposed to high-fat diet (HFD). We further analysed the regulations of hypothalamic genes involved in inflammation and mitochondrial pathways by high throughput microfluidic qPCR on RNA extracted from laser micro-dissected arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei. HFD induced increased body weight gain, circulating levels of leptin, cholesterol, HDL and LDL in C57BL/6J whereas WSB/EiJ mice displayed a lower inflammatory status, both peripherally (lower levels of circulating cytokines) and centrally (less activated microglia in the hypothalamus) as well as more reactive mitochondria in the hypothalamus. The gene expression data analysis allowed identifying strain-specific hypothalamic metabolic pathways involved in the respective responses to HFD. Our results point to the involvement of hypothalamic inflammatory and mitochondrial pathways as key factors in the control of energy homeostasis and the resistance to DIO.


Asunto(s)
Inflamación/metabolismo , Mitocondrias/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Animales , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patología , Inflamación/genética , Mediadores de Inflamación/metabolismo , Leptina/sangre , Metabolismo de los Lípidos , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Dinámicas Mitocondriales , Obesidad/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Especificidad de la Especie , Transcriptoma
14.
Acta Biomater ; 72: 316-328, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29597026

RESUMEN

Tube-building sabellariid polychaetes are hermatypic organisms capable of forming vast reefs in highly turbulent marine habitats. Sabellariid worms assemble their tube by gluing together siliceous and calcareous clastic particles using a polyelectrolytic biocement. Here, we performed transcriptomic analyses to investigate the genes that are differentially expressed in the parathorax region, which contains the adhesive gland and tissues, from the rest of the body. We found a large number of candidate genes to be involved in the composition and formation of biocement in two species: Sabellaria alveolata and Phragmatopoma caudata. Our results indicate that the glue is likely to be composed by a large diversity of cement-related proteins, including Poly(S), GY-rich, H-repeat and miscellaneous categories. However, sequences divergence and differences in expression profiles between S. alveolata and P. caudata of cement-related proteins may reflect adaptation to the type of substratum used to build their tube, and/or to their habitat (temperate vs tropical, amplitude of pH, salinity …). Related to the L-DOPA metabolic pathways and linked with the genes that were differentially expressed in the parathorax region, we found that tyrosinase and peroxidase gene families may have undergone independent expansion in the two Sabellariidae species investigated. Our data also reinforce the importance of protein modifications in cement formation. Altogether these new genomic resources help to identify novel transcripts encoding for cement-related proteins, but also important enzymes putatively involved in the chemistry of the adhesion process, such as kinases, and may correspond to new targets to develop biomimetic approaches. STATEMENTS OF SIGNIFICANCE: The diversity of bioadhesives elaborated by marine invertebrates is a tremendous source of inspiration to develop biomimetic approaches for biomedical and technical applications. Recent studies on the adhesion system of mussel, barnacle and sea star had highlighted the usefulness of high-throughput RNA sequencing in accelerating the development of biomimetic adhesives. Adhesion in sandcastle worms, which involves catechol and phosphate chemistries, polyelectrolyte complexes, supramolecular architectures, and a coacervation process, is a useful model to develop multipurpose wet adhesives. Using transcriptomic tools, we have explored the diversity of genes encoding for structural and catalytic proteins involved in cement formation of two sandcastle worm species, Sabellaria alveolata and Phragmatopoma caudata. The important genomic resource generated should help to design novel "blue" adhesives.


Asunto(s)
Organismos Acuáticos/metabolismo , Glándulas Exocrinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Poliquetos/metabolismo , Animales , Organismos Acuáticos/genética , Poliquetos/genética
15.
J Pain Res ; 11: 715-725, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692624

RESUMEN

BACKGROUND: It has been repetitively shown that the transcription factors DLX5 and DLX6 are drastically downregulated in endometriotic lesions when compared with eutopic endometrium. These findings suggest that regulatory cascades involving DLX5/6 might be at the origin of endometriosis symptoms such as chronic pelvic pain (CPP). We have shown that inactivation of Dlx5 and Dlx5/6 in the mouse uterus results in an endometrial phenotype reminiscent of endometriosis. METHODS: We focused on genes that present a similar deregulation in endometriosis and in Dlx5/6-null mice in search of new endometriosis targets. RESULTS: We confirmed a strong reduction of DLX5 expression in endometriosis implants. We identified a signature of 30 genes similarly deregulated in human endometriosis implants and in Dlx5/6-null mouse uteri, reinforcing the notion that the downregulation of Dlx5/6 is an early event in the progress of endometriosis. CACNA2D3, a component of the α2δ family of voltage-dependent calcium channel complex, was strongly overexpressed both in mutant mouse uteri and in endometriosis implants, were also CACNA2D1 and CACNA2D2, other members of the α2δ family involved in nociception, are upregulated. CONCLUSION: Comparative analysis of gene expression signatures from endometriosis and mouse models showed that calcium channel subunits α2δ involved in nociception can be targets for the treatment of endometriosis-associated pain. CACNA2D3 has been associated with pain sensitization and heat nociception in animal models. In patients, CACNA2D3 variants were associated with reduced sensitivity to acute noxious stimuli. As α2δs were targets of gabapentinoid analgesics, the results suggested the use of these drugs for the treatment of endometriosis-associated pain. Indeed, recent small-scale clinical studies have shown that gabapentin could be effective in women with CPP. The findings of this study reinforce the need for a large definitive trial.

16.
Environ Pollut ; 219: 119-131, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27814527

RESUMEN

Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 µg L-1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 µg L-1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100-400 genes are differentially expressed under 5 µg L-1 MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a wider range of biological pathways, compared with pure MC-LR, and even 1 µg L-1 MC-LR potentially induces a health risk for aquatic organisms.


Asunto(s)
Toxinas Bacterianas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedades de los Peces/inducido químicamente , Hígado/efectos de los fármacos , Microcistinas/toxicidad , Microcystis/química , Oryzias/fisiología , Reproducción/efectos de los fármacos , Animales , Toxinas Bacterianas/administración & dosificación , Extractos Celulares/administración & dosificación , Extractos Celulares/farmacología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glucógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Microcistinas/administración & dosificación , Oviparidad/efectos de los fármacos , Oviparidad/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Transcriptoma/efectos de los fármacos
17.
Sci Rep ; 6: 32459, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561897

RESUMEN

Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues.


Asunto(s)
Hígado/metabolismo , Oryzias/genética , Proteómica , Caracteres Sexuales , Animales , Femenino , Hígado/crecimiento & desarrollo , Masculino , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oryzias/crecimiento & desarrollo , Oryzias/fisiología , Biosíntesis de Proteínas
18.
Cell Rep ; 14(9): 2263-2272, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26923600

RESUMEN

Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/genética , Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Marcación de Gen , Humanos , Mutación INDEL , Ratones , Oligonucleótidos/genética , Ratas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA