Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117077

RESUMEN

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Asunto(s)
Osteogénesis , Proteoglicanos , Animales , Osteogénesis/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , Pez Cebra/genética , Cartílago/metabolismo , Condrocitos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo
2.
Dev Dyn ; 252(11): 1375-1390, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37083105

RESUMEN

BACKGROUND: Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS: The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION: These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.


Asunto(s)
Cartílago , Pez Cebra , Ratones , Animales , Ratones Transgénicos , Condrocitos/metabolismo , Anfibios , Hipertrofia , Diferenciación Celular
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108575

RESUMEN

The goal of cartilage tissue engineering (CTE) is to regenerate new hyaline cartilage in joints and treat osteoarthritis (OA) using cell-impregnated hydrogel constructs. However, the production of an extracellular matrix (ECM) made of fibrocartilage is a potential outcome within hydrogel constructs when in vivo. Unfortunately, this fibrocartilage ECM has inferior biological and mechanical properties when compared to native hyaline cartilage. It was hypothesized that compressive forces stimulate fibrocartilage development by increasing production of collagen type 1 (Col1), an ECM protein found in fibrocartilage. To test the hypothesis, 3-dimensional (3D)-bioprinted hydrogel constructs were fabricated from alginate hydrogel impregnated with ATDC5 cells (a chondrogenic cell line). A bioreactor was used to simulate different in vivo joint movements by varying the magnitude of compressive strains and compare them with a control group that was not loaded. Chondrogenic differentiation of the cells in loaded and unloaded conditions was confirmed by deposition of cartilage specific molecules including glycosaminoglycans (GAGs) and collagen type 2 (Col2). By performing biochemical assays, the production of GAGs and total collagen was also confirmed, and their contents were quantitated in unloaded and loaded conditions. Furthermore, Col1 vs. Col2 depositions were assessed at different compressive strains, and hyaline-like cartilage vs. fibrocartilage-like ECM production was analyzed to investigate how applied compressive strain affects the type of cartilage formed. These assessments showed that fibrocartilage-like ECM production tended to reduce with increasing compressive strain, though its production peaked at a higher compressive strain. According to these results, the magnitude of applied compressive strain governs the production of hyaline-like cartilage vs. fibrocartilage-like ECM and a high compressive strain stimulates fibrocartilage-like ECM formation rather than hyaline cartilage, which needs to be addressed by CTE approaches.


Asunto(s)
Cartílago Hialino , Hidrogeles , Cartílago Hialino/metabolismo , Hidrogeles/química , Hialina/metabolismo , Fibrocartílago/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Ingeniería de Tejidos/métodos , Glicosaminoglicanos/metabolismo , Condrocitos/metabolismo
4.
J Anat ; 240(1): 34-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423431

RESUMEN

Ancestors of the Antarctic icefishes (family Channichthyidae) were benthic and had no swim bladder, making it energetically expensive to rise from the ocean floor. To exploit the water column, benthopelagic icefishes were hypothesized to have evolved a skeleton with "reduced bone," which gross anatomical data supported. Here, we tested the hypothesis that changes to icefish bones also occurred below the level of gross anatomy. Histology and micro-CT imaging of representative craniofacial bones (i.e., ceratohyal, frontal, dentary, and articular) of extant Antarctic fish species specifically evaluated two features that might cause the appearance of "reduced bone": bone microstructure (e.g., bone volume fraction and structure linear density) and bone mineral density (BMD, or mass of mineral per volume of bone). Measures of bone microstructure were not consistently different in bones from the icefishes Chaenocephalus aceratus and Champsocephalus gunnari, compared to the related benthic notothenioids Notothenia coriiceps and Gobionotothen gibberifrons. Some quantitative measures, such as bone volume fraction and structure linear density, were significantly increased in some icefish bones compared to homologous bones of non-icefish. However, such differences were rare, and no microstructural measures were consistently different in icefishes across all bones and species analyzed. Furthermore, BMD was similar among homologous bones of icefish and non-icefish Antarctic notothenioids. In summary, "reduced bone" in icefishes was not due to systemic changes in bone microstructure or BMD, raising the prospect that "reduced bone" in icefish occurs only at the gross anatomic level (i.e., smaller or fewer bones). Given that icefishes exhibit delayed skeletal development compared to non-icefish Antarctic fishes, combining these phenotypic data with genomic data might clarify genetic changes driving skeletal heterochrony.


Asunto(s)
Densidad Ósea , Perciformes , Animales , Regiones Antárticas , Peces/anatomía & histología , Perciformes/anatomía & histología
5.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628403

RESUMEN

Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/ß-catenin pathway. However, the mechanism by which SMG alters the Wnt/ß-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/ß-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/ß-catenin and Wnt/ß-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/ß-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal , Osteoblastos , Ingravidez , Vía de Señalización Wnt , beta Catenina , Células 3T3 , Animales , Activación Enzimática , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Microtomografía por Rayos X , beta Catenina/metabolismo
6.
BMC Bioinformatics ; 22(1): 125, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726666

RESUMEN

BACKGROUND: Gene co-expression networks (GCNs) are not easily comparable due to their complex structure. In this paper, we propose a tool, Juxtapose, together with similarity measures that can be utilized for comparative transcriptomics between a set of organisms. While we focus on its application to comparing co-expression networks across species in evolutionary studies, Juxtapose is also generalizable to co-expression network comparisons across tissues or conditions within the same species. METHODS: A word embedding strategy commonly used in natural language processing was utilized in order to generate gene embeddings based on walks made throughout the GCNs. Juxtapose was evaluated based on its ability to embed the nodes of synthetic structures in the networks consistently while also generating biologically informative results. Evaluation of the techniques proposed in this research utilized RNA-seq datasets from GTEx, a multi-species experiment of prefrontal cortex samples from the Gene Expression Omnibus, as well as synthesized datasets. Biological evaluation was performed using gene set enrichment analysis and known gene relationships in literature. RESULTS: We show that Juxtapose is capable of globally aligning synthesized networks as well as identifying areas that are conserved in real gene co-expression networks without reliance on external biological information. Furthermore, output from a matching algorithm that uses cosine distance between GCN embeddings is shown to be an informative measure of similarity that reflects the amount of topological similarity between networks. CONCLUSIONS: Juxtapose can be used to align GCNs without relying on known biological similarities and enables post-hoc analyses using biological parameters, such as orthology of genes, or conserved or variable pathways. AVAILABILITY: A development version of the software used in this paper is available at https://github.com/klovens/juxtapose.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Algoritmos , Programas Informáticos
7.
Cell Physiol Biochem ; 53(5): 832-850, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31703162

RESUMEN

BACKGROUND/AIMS: Runt-related transcription factor 2 (Runx2) is a master regulator of osteogenic differentiation, but most of the direct downstream targets of RUNX2 during osteogenesis are unknown. Likewise, High-temperature requirement factor A1 (HTRA1) is a serine protease expressed in bone, yet the role of Htra1 during osteoblast differentiation remains elusive. We investigated the role of Htra1 in osteogenic differentiation and the transcriptional regulation of Htra1 by RUNX2 in primary mouse mesenchymal progenitor cells. METHODS: Overexpression of Htra1 was carried out in primary mouse mesenchymal progenitor cells to evaluate the extent of osteoblast differentiation. Streptavidin agarose pulldown assay, chromatin immunoprecipitation assay, and dual luciferase assay were carried out to investigate the interaction of RUNX2 protein at the Htra1 promoter during osteoblast differentiation. RESULTS: Overexpression of Htra1 increased the production of mineralized bone matrix, upregulating several osteoblast genes, such as Sp7 transcription factor (Sp7) and Alkaline phosphatase, liver/bone/kidney (Alpl). In addition, Htra1 upregulated osteogenesis-related signalling genes, such as Fibroblast growth factor 9 (Fgf9) and Vascular endothelial growth factor A (Vegfa). A series of experiments confirmed Htra1 as a direct RUNX2 transcriptional target. Overexpression of Runx2 resulted in the upregulation of Htra1 mRNA and protein. Chromatin immunoprecipitation and streptavidin agarose pull-down assays showed that RUNX2 binds a proximal -400 bp region of the Htra1 promoter during osteogenic differentiation. Dual luciferase assays confirmed that RUNX2 activates the proximal Htra1 promoter during osteogenic differentiation. Mutation of putative RUNX2 binding sites revealed that RUNX2 interacts with the Htra1 promoter at -252 bp and -84 bp to induce Htra1 expression. CONCLUSION: We demonstrate that Htra1 is a positive regulator of osteogenic differentiation, showing for the first time that Htra1 is a direct downstream target of RUNX2.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Regiones Promotoras Genéticas , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Mol Biol Evol ; 33(1): 13-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26500251

RESUMEN

Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology.


Asunto(s)
Bagres/genética , Evolución Molecular , Expresión Génica , Modelos Genéticos , Fenotipo , Animales , Biología Computacional , Expresión Génica/genética , Expresión Génica/fisiología , Programas Informáticos
9.
Int J Mol Sci ; 18(7)2017 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-28737701

RESUMEN

Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.


Asunto(s)
Bioimpresión/métodos , Cartílago/citología , Cartílago/metabolismo , Hidrogeles/química , Ingeniería de Tejidos/métodos , Animales , Humanos
10.
Biochemistry ; 55(17): 2441-51, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-26985789

RESUMEN

Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.


Asunto(s)
Cartílago Articular/metabolismo , Embrión no Mamífero/diagnóstico por imagen , Matriz Extracelular/metabolismo , Proteoglicanos/deficiencia , Azufre/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , Embrión no Mamífero/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
11.
J Synchrotron Radiat ; 23(Pt 3): 802-12, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140161

RESUMEN

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell-laden hybrid constructs over time. Second, optimization of inline PCI-CT was performed by investigating three sample-to-detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42-day culture period. The results showed that there was progressive secretion of cartilage-specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge-enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR-inline-PCI-CT images. Summarily, SR-inline-PCI-CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42-day culture period.

12.
Dev Biol ; 385(2): 380-95, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24262986

RESUMEN

Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work indicates that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.


Asunto(s)
Ciclo Celular/genética , Evolución Molecular , Cara , Osteogénesis/genética , Cráneo/crecimiento & desarrollo , Animales , Secuencia de Bases , Vasos Sanguíneos/crecimiento & desarrollo , Western Blotting , Coturnix , Cartilla de ADN , Patos , Especificidad de la Especie
13.
Development ; 139(13): 2371-80, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627283

RESUMEN

In the developing skeleton, dermal bone morphogenesis includes the balanced proliferation, recruitment and differentiation of osteoblast precursors, yet how bones acquire unique morphologies is unknown. We show that Hedgehog (Hh) signaling mediates bone shaping during early morphogenesis of the opercle (Op), a well characterized dermal bone of the zebrafish craniofacial skeleton. ihha is specifically expressed in a local population of active osteoblasts along the principal growing edge of the bone. Mutational studies show that Hh signaling by this osteoblast population is both necessary and sufficient for full recruitment of pre-osteoblasts into the signaling population. Loss of ihha function results in locally reduced proliferation of pre-osteoblasts and consequent reductions in recruitment into the osteoblast pool, reduced bone edge length and reduced outgrowth. Conversely, hyperactive Hh signaling in ptch1 mutants causes opposite defects in proliferation and growth. Time-lapse microscopy of early Op morphogenesis using transgenically labeled osteoblasts demonstrates that ihha-dependent bone development is not only region specific, but also begins exactly at the onset of a second phase of morphogenesis, when the early bone begins to reshape into a more complex form. These features strongly support a hypothesis that dermal bone development is modular, with different gene sets functioning at specific times and locations to pattern growth. The Hh-dependent module is not limited to this second phase of bone growth: during later larval development, the Op is fused along the dysmorphic edge to adjacent dermal bones. Hence, patterning within a module may include adjacent regions of functionally related bones and might require that signaling pathways function over an extended period of development.


Asunto(s)
Desarrollo Óseo/fisiología , Proliferación Celular , Proteínas Hedgehog/fisiología , Morfogénesis/fisiología , Animales , Regulación hacia Abajo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas de la Membrana , Mutación , Osteoblastos/fisiología , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
14.
PLoS Genet ; 7(8): e1002246, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901110

RESUMEN

Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.


Asunto(s)
Condrocitos/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Osteogénesis/genética , Pentosiltransferasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Cartílago/crecimiento & desarrollo , Cartílago/ultraestructura , Células Cultivadas , Condrocitos/ultraestructura , Proteoglicanos Tipo Condroitín Sulfato/genética , Colágeno/genética , Proteínas Hedgehog/metabolismo , Mutación , Pez Cebra/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
15.
BMC Dev Biol ; 13: 23, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714426

RESUMEN

BACKGROUND: The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. DESCRIPTION: We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. CONCLUSION: The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.


Asunto(s)
Cara/anatomía & histología , Cráneo/anatomía & histología , Pez Cebra/anatomía & histología , Animales
16.
J Funct Biomater ; 14(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367278

RESUMEN

Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.

17.
PLoS One ; 18(10): e0291757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788257

RESUMEN

Accurate evaluation of morphological changes in articular cartilage are necessary for early detection of osteoarthritis (OA). 3T magnetic resonance imaging (MRI) has highly sensitive contrast resolution and is widely used clinically to detect OA. However, synchrotron radiation phase-contrast imaging computed tomography (SR-PCI) can also provide contrast to tissue interfaces that do not have sufficient absorption differences, with the added benefit of very high spatial resolution. Here, MRI was compared with SR-PCI for quantitative evaluation of human articular cartilage. Medial tibial condyles were harvested from non-OA donors and from OA patients receiving knee replacement surgery. Both imaging methods revealed that average cartilage thickness and cartilage volume were significantly reduced in the OA group, compared to the non-OA group. When comparing modalities, the superior resolution of SR-PCI enabled more precise mapping of the cartilage surface relative to MRI. As a result, MRI showed significantly higher average cartilage thickness and cartilage volume, compared to SR-PCI. These data highlight the potential for high-resolution imaging of articular cartilage using SR-PCI as a solution for early OA diagnosis. Recognizing current limitations of using a synchrotron for clinical imaging, we discuss its nascent utility for preclinical models, particularly longitudinal studies of live animal models of OA.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Intervención Coronaria Percutánea , Animales , Humanos , Cartílago Articular/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Sincrotrones , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen
18.
Dev Biol ; 356(1): 28-39, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21600197

RESUMEN

Secondary cartilage occurs at articulations, sutures, and muscle attachments, and facilitates proper kinetic movement of the skeleton. Secondary cartilage requires mechanical stimulation for its induction and maintenance, and accordingly, its evolutionary presence or absence reflects species-specific variation in functional anatomy. Avians illustrate this point well. In conjunction with their distinct adult mode of feeding via levered straining, duck develop a pronounced secondary cartilage at the insertion (i.e., enthesis) of the mandibular adductor muscles on the lower jaw skeleton. An equivalent cartilage is absent in quail, which peck at their food. We hypothesized that species-specific pattern and a concomitant dissimilarity in the local mechanical environment promote secondary chondrogenesis in the mandibular adductor enthesis of duck versus quail. To test our hypothesis we employed two experimental approaches. First, we transplanted neural crest mesenchyme (NCM) from quail into duck, which produced chimeric "quck" with a jaw complex resembling that of quail, including an absence of enthesis secondary cartilage. Second, we modified the mechanical environment in embryonic duck by paralyzing skeletal muscles, and by blocking the ability of NCM to support mechanotransduction through stretch-activated ion channels. Paralysis inhibited secondary cartilage, as evidenced by changes in histology and expression of genes that affect chondrogenesis, including members of the FGF and BMP pathways. Ion channel inhibition did not alter enthesis secondary cartilage but caused bone to form in place of secondary cartilage at articulations. Thus, our study reveals that enthesis secondary cartilage forms through mechanisms that are distinct from those regulating other secondary cartilage. We conclude that by directing the musculoskeletal patterning and integration of the jaw complex, NCM modulates the mechanical forces and molecular signals necessary to control secondary cartilage formation during development and evolution.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis , Mecanotransducción Celular , Mesodermo/fisiología , Estrés Mecánico , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Patos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Canales Iónicos/fisiología , Maxilares/embriología , Mesodermo/metabolismo , Modelos Animales , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Cresta Neural/trasplante , Codorniz , Transducción de Señal , Quimera por Trasplante/genética , Quimera por Trasplante/metabolismo
19.
BMC Evol Biol ; 12: 27, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22390748

RESUMEN

BACKGROUND: Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD), or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio)--a teleost--and the spotted gar (Lepisosteus oculatus)--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group). We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. RESULTS: Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. CONCLUSIONS: Our surprising finding that the "chondrogenic" transcription factor sox9 is expressed in developing osteoblasts of both zebrafish and gar can help explain the expression of chondrocyte genes in osteoblasts of ray-finned fish. More broadly, our data suggest that the molecular fingerprint of the osteoblast, which largely is constrained among land animals, was not fixed during early vertebrate evolution.


Asunto(s)
Peces/genética , Osteoblastos/citología , Pez Cebra/genética , Animales , Huesos/citología , Huesos/fisiología , Condrocitos/citología , Peces/fisiología , Osteoblastos/fisiología , Osteogénesis , Pez Cebra/fisiología
20.
J Dev Biol ; 10(2)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466193

RESUMEN

During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP-PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA