Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1012047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412195

RESUMEN

Variability in how individuals respond to pathogens is a hallmark of infectious disease, yet the basis for individual variation in host response is often poorly understood. The titer of infectious virus among individual mosquitoes infected with arboviruses is frequently observed to vary by several orders of magnitude in a single experiment, even when the mosquitoes are highly inbred. To better understand the basis for this titer variation, we sequenced populations of Sindbis virus (SINV) obtained from individual infected Aedes aegypti mosquitoes that, despite being from a highly inbred laboratory colony, differed in their titers of infectious virus by approximately 10,000-fold. We observed genetic differences between these virus populations that indicated the virus present in the midguts of low titer mosquitoes was less fit than that of high titer mosquitoes, possibly due to founder effects that occurred during midgut infection. Furthermore, we found dramatic differences in the specific infectivity or SI (the ratio of infectious units/viral genome equivalents) between these virus populations, with the SI of low titer mosquitoes being up to 10,000-fold lower than that of high titer mosquitoes. Despite having similar amounts of viral genomes, low titer mosquitoes appeared to contain less viral particles, suggesting that viral genomes were packaged into virions less efficiently than in high titer mosquitoes. Finally, antibiotic treatment, which has been shown to suppress mosquito antiviral immunity, caused an increase in SI. Our results indicate that the extreme variation that is observed in SINV infectious titer between individual Ae. aegypti mosquitoes is due to both genetic differences between virus populations and to differences in the proportion of genomes that are packaged into infectious particles.


Asunto(s)
Aedes , Infecciones por Alphavirus , Humanos , Animales , Virus Sindbis/genética , Secuencia de Bases , Mosquitos Vectores
2.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128148

RESUMEN

The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Femenino , Masculino , Filogenia , Mosquitos Vectores/genética , Aedes/genética , Aedes/metabolismo , Empalme del ARN
3.
Viruses ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38932123

RESUMEN

Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12-20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick-virus association is stable across diverse viral genotypes.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Ixodes/virología , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/clasificación , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/transmisión , Encefalitis Transmitida por Garrapatas/virología , Humanos , Femenino , Vectores Arácnidos/virología
4.
5.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560529

RESUMEN

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

6.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39091762

RESUMEN

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and associated virus infection dynamics are scarce, and in Culex tarsalis - an extremely efficient vector of West Nile virus (WNV) - nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprised of 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells and cells enriched for mitochondrial genes, suggesting enhanced replication in these populations. In contrast, proliferating intestinal stem cell (ISC) populations had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in viral control. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.

7.
Front Cell Infect Microbiol ; 13: 1330600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188633

RESUMEN

Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.


Asunto(s)
Culicidae , Mosquitos Vectores , Animales , Vectores Artrópodos , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA