Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 13(5): e1006348, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475648

RESUMEN

APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.


Asunto(s)
Aminohidrolasas/genética , Citosina Desaminasa/genética , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Desaminasas APOBEC , Aminohidrolasas/metabolismo , Animales , Citidina Desaminasa , Citosina Desaminasa/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Infecciones por VIH/transmisión , VIH-1/genética , Humanos , Ratones , Ratones Noqueados , Modelos Genéticos , Mutación , Filogenia , ARN Viral/química , ARN Viral/genética , Análisis de Secuencia de ARN , Replicación Viral
3.
Mol Biol Evol ; 33(12): 3205-3212, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27682824

RESUMEN

The dinucleotide CpG is highly underrepresented in the genome of human immunodeficiency virus type 1 (HIV-1). To identify the source of CpG depletion in the HIV-1 genome, we investigated two biological mechanisms: (1) CpG methylation-induced transcriptional silencing and (2) CpG recognition by Toll-like receptors (TLRs). We hypothesized that HIV-1 has been under selective evolutionary pressure by these mechanisms leading to the reduction of CpG in its genome. A CpG depleted genome would enable HIV-1 to avoid methylation-induced transcriptional silencing and/or to avoid recognition by TLRs that identify foreign CpG sequences. We investigated these two hypotheses by determining the sequence context dependency of CpG depletion and comparing it with that of CpG methylation and TLR recognition. We found that in both human and HIV-1 genomes the CpG motifs flanked by T/A were depleted most and those flanked by C/G were depleted least. Similarly, our analyses of human methylome data revealed that the CpG motifs flanked by T/A were methylated most and those flanked by C/G were methylated least. Given that a similar CpG depletion pattern was observed for the human genome within which CpGs are not likely to be recognized by TLRs, we argue that the main source of CpG depletion in HIV-1 is likely host-induced methylation. Analyses of CpG motifs in over 100 viruses revealed that this unique CpG representation pattern is specific to the human and simian immunodeficiency viruses.


Asunto(s)
Islas de CpG , VIH-1/genética , Proteínas Represoras/genética , Secuencia de Bases , Evolución Biológica , Metilación de ADN , Bases de Datos de Ácidos Nucleicos , Fosfatos de Dinucleósidos/genética , Genoma Humano , Humanos , Modelos Estadísticos , Proteínas Represoras/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
4.
J Virol ; 88(24): 14310-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25275134

RESUMEN

UNLABELLED: The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE: Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.


Asunto(s)
Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Mutación Missense , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Epítopos de Linfocito T/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Evasión Inmune , Macaca nemestrina , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/genética
5.
Rapid Commun Mass Spectrom ; 29(1): 91-9, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25462368

RESUMEN

RATIONALE: Mass spectrometric identification of compounds in chromatography can be obtained from molecular masses from soft ionization mass spectrometry techniques such as field ionization (FI) and fragmentation patterns from hard ionization techniques such as electron ionization (EI). Simultaneous detection by EI and FI mass spectrometry allows alignment of the different information from each method. METHODS: We report the construction and characteristics of a combined instrument consisting of a gas chromatograph and two parallel mass spectrometry ionization sources, EI and FI. When considering both ion yield and signal-to-noise it was postulated that good-quality EI and FI mass spectra could be obtained simultaneously using a post-column splitter with a split fraction of 1:10 for EI/FI. This has been realised and we report its application for the analysis of several complex mixtures. RESULTS: The differences between the full width at half maximum (FWHM) of the EI and FI chromatograms were statistically insignificant, and the retention times of the chromatograms were highly correlated (r(2) =0.9999) with no detectable bias. The applicability and significance of this combined instrument and the attendant methodology are illustrated by the analysis of standard samples of 13 compounds with diverse structures, and the analysis of mixtures of fatty acids, fish oil, hydrocarbons and yeast metabolites. CONCLUSIONS: This combined dual-source instrument saves time and resources, and more importantly generates equivalent chromatograms aligned in time, in EI and FI (i.e. peaks with similar shapes and identical positions). The identical FWHMs and retention times of the EI and FI chromatograms in this combined instrument enable the accurate assignment of fragment ions from EI to their corresponding molecular ions in FI.

6.
J Biomed Inform ; 58: 220-225, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26494601

RESUMEN

The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.


Asunto(s)
Mutación , Alineación de Secuencia , Virus/genética , Humanos
7.
J Virol ; 87(14): 8195-204, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698293

RESUMEN

Almost half of the human genome is composed of transposable elements. The genomic structures and life cycles of some of these elements suggest they are a result of waves of retroviral infection and transposition over millions of years. The reduction of retrotransposition activity in primates compared to that in nonprimates, such as mice, has been attributed to the positive selection of several antiretroviral factors, such as apolipoprotein B mRNA editing enzymes. Among these, APOBEC3G is known to mutate G to A within the context of GG in the genome of endogenous as well as several exogenous retroelements (the underlining marks the G that is mutated). On the other hand, APOBEC3F and to a lesser extent other APOBEC3 members induce G-to-A changes within the nucleotide GA. It is known that these enzymes can induce deleterious mutations in the genome of retroviral sequences, but the evolution and/or inactivation of retroelements as a result of mutation by these proteins is not clear. Here, we analyze the mutation signatures of these proteins on large populations of long interspersed nuclear element (LINE), short interspersed nuclear element (SINE), and endogenous retrovirus (ERV) families in the human genome to infer possible evolutionary pressure and/or hypermutation events. Sequence context dependency of mutation by APOBEC3 allows investigation of the changes in the genome of retroelements by inspecting the depletion of G and enrichment of A within the APOBEC3 target and product motifs, respectively. Analysis of approximately 22,000 LINE-1 (L1), 24,000 SINE Alu, and 3,000 ERV sequences showed a footprint of GG→AG mutation by APOBEC3G and GA→AA mutation by other members of the APOBEC3 family (e.g., APOBEC3F) on the genome of ERV-K and ERV-1 elements but not on those of ERV-L, LINE, or SINE.


Asunto(s)
Citosina Desaminasa/genética , Evolución Molecular , Genoma Humano/genética , Huella de Proteína/métodos , Retroelementos/genética , Desaminasas APOBEC , Biología Computacional , Citidina Desaminasa , Humanos , Cadenas de Markov , Modelos Genéticos , Mutación/genética
8.
Inorg Chem ; 53(3): 1278-87, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24432726

RESUMEN

We report a systematic study of the effects of types and positions of amino acid residues of tripeptides on the formation constants logß, acid dissociation constants pKa, and the copper coordination modes of the copper(II) complexes with 27 tripeptides formed from the amino acids glutamic acid, glycine, and histidine. logß values were calculated from pH titrations with l mmol L(-1):1 mmol L(-1) solutions of the metal and ligand and previously reported ligand pKa values. Generalized multiplicative analysis of variance (GEMANOVA) was used to model the logß values of the saturated, most protonated, monoprotonated, logß(CuL) - logß(HL), and pKa of the amide group. The resulting model of the saturated copper species has a two-term model describing an interaction between the central and the C-terminal residues plus a smaller, main effect of the N-terminal residue. The model supports the conclusion that two copper coordination modes exist depending on the absence or presence of His at the central position, giving species in which copper is coordinated via two or three fused chelate rings, respectively. The GEMANOVA model for pKamide, which is the same as that for the saturated complex, showed that Gly-Gly-His has the lowest pKamide values among the 27 tripeptides. Visible spectroscopy indicated the formation of metal-ligand dimers for tripeptides His-His-Gly and His-His-Glu, but not for His-His-His, and the formation of multiple ligand bis compexes CuL2 and Cu(HL)2 for tripeptides (Glu/Gly)-His-(Glu/Gly) and His-(Glu/Gly)-(Glu/Gly), respectively.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Ácido Glutámico/química , Glicina/química , Histidina/química , Oligopéptidos/química , Análisis de Varianza , Modelos Moleculares , Potenciometría
9.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559028

RESUMEN

APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.

10.
Front Cell Infect Microbiol ; 14: 1408245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006742

RESUMEN

While simian immunodeficiency virus (SIV) infection is non-pathogenic in naturally infected African nonhuman primate hosts, experimental or accidental infection in rhesus macaques often leads to AIDS. Baboons, widely distributed throughout Africa, do not naturally harbor SIV, and experimental infection of baboons with SIVmac results in transient low-level viral replication. Elucidation of mechanisms of natural immunity in baboons could uncover new targets of antiviral intervention. We tested the hypothesis that an SIVmac adapted to replicate in baboon primary cells will gain the capacity to establish chronic infections in vivo. Here, we generated SIVmac variants in baboon cells through serial passage in PBMC from different donors (SIVbn-PBMC s1), in PBMC from the same donors (SIVbn-PBMC s2), or in isolated CD4 cells from the same donors used for series 2 (SIVbn-CD4). While SIVbn-PBMC s1 and SIVbn-CD4 demonstrated increased replication capacity, SIVbn-PBMC s2 did not. Pharmacological blockade of CCR5 revealed SIVbn-PBMC s1 could more efficiently use available CCR5 than SIVmac, a trait we hypothesize arose to circumvent receptor occupation by chemokines. Sequencing analysis showed that all three viruses accumulated different types of mutations, and that more non-synonymous mutations became fixed in SIVbn-PBMC s1 than SIVbn-PBMC s2 and SIVbn-CD4, supporting the notion of stronger fitness pressure in PBMC from different genetic backgrounds. Testing the individual contribution of several newly fixed SIV mutations suggested that is the additive effect of these mutations in SIVbn-PBMC s1 that contributed to its enhanced fitness, as recombinant single mutant viruses showed no difference in replication capacity over the parental SIVmac239 strain. The replicative capacity of SIVbn-PBMC passage 4 (P4) s1 was tested in vivo by infecting baboons intravenously with SIVbn-PBMC P4 s1 or SIVmac251. While animals infected with SIVmac251 showed the known pattern of transient low-level viremia, animals infected with SIVbn-PBMC P4 s1 had undetectable viremia or viral DNA in lymphoid tissue. These studies suggest that adaptation of SIV to grow in baboon primary cells results in mutations that confer increased replicative capacity in the artificial environment of cell culture but make the virus unable to avoid the restrictive factors generated by a complex multicellular organism.


Asunto(s)
Papio , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Replicación Viral , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Leucocitos Mononucleares/virología , Leucocitos Mononucleares/inmunología , Receptores CCR5/metabolismo , Receptores CCR5/genética , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Pase Seriado
11.
Viruses ; 16(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39066304

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.


Asunto(s)
Desaminasas APOBEC , COVID-19 , Citidina Desaminasa , SARS-CoV-2 , Replicación Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Desaminasas APOBEC/metabolismo , Desaminasas APOBEC/genética , COVID-19/virología , COVID-19/metabolismo , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Células THP-1 , Mutación , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Genoma Viral
12.
Retrovirology ; 9: 113, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23256516

RESUMEN

BACKGROUND: The human immune proteins APOBEC3G and APOBEC3F (hA3G and hA3F) induce destructive G-to-A changes in the HIV genome, referred to as 'hypermutation'. These two proteins co-express in human cells, co-localize to mRNA processing bodies and might co-package into HIV virions. Therefore they are expected to also co-mutate the HIV genome. Here we investigate the mutational footprints of hA3G and hA3F in a large population of full genome HIV-1 sequences from naturally infected patients to uniquely identify sequences hypermutated by either or both of these proteins. We develop a method of identification based on the representation of hA3G and hA3F target and product motifs that does not require an alignment to a parental/consensus sequence. RESULTS: Out of nearly 100 hypermutated HIV-1 sequences only one sequence from the HIV-1 outlier group showed clear signatures of co-mutation by both proteins. The remaining sequences were affected by either hA3G or hA3F. CONCLUSION: Using a novel method of identification of HIV sequences hypermutated by the hA3G and hA3F enzymes, we report a very low rate of co-mutation of full-length HIV sequences, and discuss the potential mechanisms underlying this.


Asunto(s)
Citidina Desaminasa/genética , Citosina Desaminasa/genética , Genoma Viral , VIH-1/genética , Mutación , Desaminasa APOBEC-3G , Humanos , Motivos de Nucleótidos
13.
J Virol ; 85(17): 9139-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21697498

RESUMEN

It is known that the human immune proteins APOBEC3G and -F (hA3G/F) can inhibit Vif-deficient HIV by G-to-A mutation; however, the roles of these enzymes in the evolution of HIV are debated. We argue that if evolutionary pressure from hA3G/F exists there should be evidence of their imprint on the HIV genome in the form of (i) underrepresentation of hA3G/F target motifs (e.g., TGGG [targeted position is underlined]) and overrepresentation of product motifs (e.g., TAGG) and/or (ii) an increase in the ratio of nonsynonymous to synonymous (NS/S) G-to-A changes among hA3G/F target motifs and a decrease of NS/S A-to-G changes among hA3G/F product motifs. To test the first hypothesis, we studied the representation of hA3G/F target and product motifs in 1,932 complete HIV-1 genomes using Markov models. We found that the highly targeted motifs are not underrepresented and their product motifs are not overrepresented. To test the second hypothesis, we determined the NS/S G↔A changes among the hA3G/F target and product motifs in 1,540 complete sets of nine HIV-1 genes. The NS/S changes did not show an increasing/decreasing trend within the target/product motifs, but the NS/S changes within the motif AG was exceptionally low. We observed the same pattern by analyzing 740 human genes. Given that hA3G/F do not act on the human genome, this suggests a small NS/S change within AG has arisen by other mechanisms. We therefore find no evidence of an evolutionary footprint of hA3G/F. We postulate several mechanisms to explain why the HIV-1 genome does not contain the hA3G/F footprint.


Asunto(s)
Citosina Desaminasa/inmunología , Evolución Molecular , Genoma Viral , VIH-1/genética , VIH-1/inmunología , ARN Viral/genética , Desaminasas APOBEC , Biología Computacional/métodos , Citidina Desaminasa , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Selección Genética
14.
Biochem J ; 438(1): 165-75, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21639855

RESUMEN

Current lipidomic profiling methods rely mainly on MS to identify unknown lipids within a complex sample. We describe a new approach, involving LC×MS/MS (liquid chromatography×tandem MS) analysis of sphingolipids based on both mass and hydrophobicity, and use this method to characterize the SM (sphingomyelin), ceramide and GalCer (galactosylceramide) content of hippocampus from AD (Alzheimer's disease) and control subjects. Using a mathematical relationship we exclude the influence of sphingolipid mass on retention time, and generate two-dimensional plots that facilitate accurate visualization and characterization of the different ceramide moieties within a given sphingolipid class, because related molecules align horizontally or vertically on the plots. Major brain GalCer species that differ in mass by only 0.04 Da were easily differentiated on the basis of their hydrophobicity. The importance of our method's capacity to define all of the major GalCer species in the brain samples is illustrated by the novel observation that the proportion of GalCer with hydroxylated fatty acids increased approximately 2-fold in the hippocampus of AD patients, compared with age- and gender-matched controls. This suggests activation of fatty acid hydroxylase in AD. Our method greatly improves the clarity of data obtained in a lipid profiling experiment and can be expanded to other lipid classes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Esfingolípidos/análisis , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Estudios de Casos y Controles , Ceramidas/análisis , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Femenino , Humanos , Masculino , Espectrometría de Masa por Ionización de Electrospray
15.
Sci Rep ; 12(1): 2420, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165300

RESUMEN

The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG dinucleotides, nor a link between the activity of ZAP and the low CpG abundance of the SARS-CoV-2 genome.


Asunto(s)
COVID-19/genética , Fosfatos de Dinucleósidos/genética , Genoma Viral/genética , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , COVID-19/virología , Fosfatos de Dinucleósidos/metabolismo , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Humanos , Motivos de Nucleótidos/genética , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/fisiología , Replicación Viral/genética
16.
Viruses ; 13(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34372572

RESUMEN

Human APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) enzymes are capable of inhibiting a wide range of endogenous and exogenous viruses using deaminase and deaminase-independent mechanisms. These enzymes are essential components of our innate immune system, as evidenced by (a) their strong positive selection and expansion in primates, (b) the evolution of viral counter-defense mechanisms, such as proteasomal degradation mediated by HIV Vif, and (c) hypermutation and inactivation of a large number of integrated HIV-1 proviruses. Numerous APOBEC3 single nucleotide polymorphisms, haplotypes, and splice variants have been identified in humans. Several of these variants have been reported to be associated with differential antiviral immunity. This review focuses on the current knowledge in the field about these natural variations and their roles in infectious diseases.


Asunto(s)
Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Virosis/genética , Citidina Desaminasa/genética , Citosina Desaminasa/genética , VIH-1/fisiología , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Polimorfismo Genético/genética , Isoformas de Proteínas/genética , Virosis/metabolismo , Replicación Viral/genética
17.
Mutat Res Rev Mutat Res ; 787: 108375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34083033

RESUMEN

The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos
18.
Anal Bioanal Chem ; 396(2): 765-73, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19949775

RESUMEN

The probability density functions of amount ratios of compounds (total codeine/total morphine, 6-monoacetylemorphine/total morphine, papaverine/total morphine, and noscapine/total morphine) from the analysis of seized heroin, originating from known world regions (South East Asia, South West Asia, South America, Mexico) allows calculation of likelihood ratios for 'unknown' samples. Application of Bayes Theorem with a suitable prior probability, for example the frequency of a particular region in the database, leads to the probability that a particular profile comes from a given target region. Data from 2549 seizures of heroin at Australia's border illustrates the method, and results are compared with simple HS1 ratio approaches for assigning geographical origin. The method can be implemented in a spreadsheet and gives more refined intelligence of the origins of seized drugs than simple ranges.


Asunto(s)
Heroína/análisis , Asia Sudoriental , Cromatografía Liquida , México , América del Sur
19.
Sci Rep ; 10(1): 1286, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992766

RESUMEN

Analysis of cancer mutational signatures have been instrumental in identification of responsible endogenous and exogenous molecular processes in cancer. The quantitative approach used to deconvolute mutational signatures is becoming an integral part of cancer research. Therefore, development of a stand-alone tool with a user-friendly interface for analysis of cancer mutational signatures is necessary. In this manuscript we introduce CANCERSIGN, which enables users to identify 3-mer and 5-mer mutational signatures within whole genome, whole exome or pooled samples. Additionally, this tool enables users to perform clustering on tumor samples based on the proportion of mutational signatures in each sample. Using CANCERSIGN, we analysed all the whole genome somatic mutation datasets profiled by the International Cancer Genome Consortium (ICGC) and identified a number of novel signatures. By examining signatures found in exonic and non-exonic regions of the genome using WGS and comparing this to signatures found in WES data we observe that WGS can identify additional non-exonic signatures that are enriched in the non-coding regions of the genome while the deeper sequencing of WES may help identify weak signatures that are otherwise missed in shallower WGS data.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Exoma , Genoma Humano , Mutación , Neoplasias/genética , Programas Informáticos , Animales , Humanos
20.
Anal Chem ; 81(4): 1450-8, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19146461

RESUMEN

Gas chromatography using a highly polar column combined with field ionization mass spectrometry (FI-MS) is used as a comprehensive two-dimensional (2D) separation approach to analyze mixtures of fatty acid methyl esters (FAMEs). A unique ordered pattern and classification of FAMEs is obtained in a 2D GC x FI-MS separation plot based on the number of carbons, the degree of unsaturation, and a combination of both by which the geometrical, positional, and structural isomers group together. FAMEs with different chain length but identical geometry, position, and degree of unsaturation follow linear patterns. These subclassifications (linear functions) can provide information about the geometry, position, and structure of unsaturation of an unknown FAME. Non-FAMEs and FAMEs with different functional groups are identified using the ordered separation pattern of the FAMEs in the GC x FI-MS plot and the exact mass data from the FI-MS mode. Measurement of exact mass also acts as a high-resolution separation technique to separate overlapping peaks. The method is illustrated by application to samples of fish, canola, and biodiesel oils and standard mixtures of 37 FAMEs and of alpha-linolenic acid methyl ester geometrical isomers. A great wealth of information is achieved in a single run.


Asunto(s)
Mezclas Complejas/química , Ácidos Grasos/análisis , Ácidos Grasos/aislamiento & purificación , Animales , Fuentes de Energía Bioeléctrica , Cromatografía de Gases , Ésteres/química , Ácidos Grasos/química , Ácidos Grasos Monoinsaturados/química , Aceites de Pescado/química , Isomerismo , Espectrometría de Masas , Aceite de Brassica napus , Ácido alfa-Linolénico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA