Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 629(8010): 121-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632395

RESUMEN

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Asunto(s)
Linaje de la Célula , Ganglios Simpáticos , Cresta Neural , Neuronas , Petromyzon , Sistema Nervioso Simpático , Tirosina 3-Monooxigenasa , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Neuronas/citología , Neuronas/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Vertebrados , Evolución Biológica , Norepinefrina/metabolismo
2.
J Biol Chem ; 294(52): 19889-19895, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31753916

RESUMEN

N6-Methyladenosine (m6A) is the most abundant post-transcriptional mRNA modification in eukaryotes and exerts many of its effects on gene expression through reader proteins that bind specifically to m6A-containing transcripts. Fragile X mental retardation protein (FMRP), an RNA-binding protein, has previously been shown to affect the translation of target mRNAs and trafficking of mRNA granules. Loss of function of FMRP causes fragile X syndrome, the most common form of inherited intellectual disability in humans. Using HEK293T cells, siRNA-mediated gene knockdown, cytoplasmic and nuclear fractions, RNA-Seq, and LC-MS/MS analyses, we demonstrate here that FMRP binds directly to a collection of m6A sites on mRNAs. FMRP depletion increased mRNA m6A levels in the nucleus. Moreover, the abundance of FMRP targets in the cytoplasm relative to the nucleus was decreased in Fmr1-KO mice, an effect also observed in highly methylated genes. We conclude that FMRP may affect the nuclear export of m6A-modified RNA targets.


Asunto(s)
Adenosina/análogos & derivados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Adenosina/metabolismo , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/química , ARN Interferente Pequeño/metabolismo
3.
J Neurosci ; 35(15): 6038-50, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25878277

RESUMEN

Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal , Degeneración Nerviosa/etiología , Médula Espinal/patología , Proteínas tau/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunoprecipitación , Lactante , Recién Nacido , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Fosforilación , Proteínas Represoras/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra , Proteínas tau/deficiencia , Proteínas tau/genética
4.
Biochim Biophys Acta ; 1852(4): 685-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25088406

RESUMEN

Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is characterized by the degeneration of spinal motor neurons and muscle atrophy. Although the genetic cause of SMA has been mapped to the Survival Motor Neuron1 (SMN1) gene, mechanisms underlying selective motor neuron degeneration in SMA remain largely unknown. Here we review the latest developments and our current understanding of the molecular mechanisms underlying SMA pathogenesis, focusing on the animal model systems that have been developed, as well as new diagnostic and treatment strategies that have been identified using these model systems. This article is part of a special issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animales , Humanos , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
5.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729675

RESUMEN

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Asunto(s)
Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/fisiología , Humanos , Sensación/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/fisiología , Órganos de los Sentidos/citología , Vertebrados/embriología , Vertebrados/fisiología
6.
Cell Rep ; 28(4): 845-854.e5, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340148

RESUMEN

N6-methyladenosine (m6A) modification of mRNA is emerging as a vital mechanism regulating RNA function. Here, we show that fragile X mental retardation protein (FMRP) reads m6A to promote nuclear export of methylated mRNA targets during neural differentiation. Fmr1 knockout (KO) mice show delayed neural progenitor cell cycle progression and extended maintenance of proliferating neural progenitors into postnatal stages, phenocopying methyltransferase Mettl14 conditional KO (cKO) mice that have no m6A modification. RNA-seq and m6A-seq reveal that both Mettl14cKO and Fmr1KO lead to the nuclear retention of m6A-modified FMRP target mRNAs regulating neural differentiation, indicating that both m6A and FMRP are required for the nuclear export of methylated target mRNAs. FMRP preferentially binds m6A-modified RNAs to facilitate their nuclear export through CRM1. The nuclear retention defect can be mitigated by wild-type but not nuclear export-deficient FMRP, establishing a critical role for FMRP in mediating m6A-dependent mRNA nuclear export during neural differentiation.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transporte de ARN , Transporte Activo de Núcleo Celular , Adenosina/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular , Proliferación Celular , Corteza Cerebral/citología , Eliminación de Gen , Carioferinas/metabolismo , Ratones Noqueados , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
7.
Cell Rep ; 20(5): 1148-1160, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768199

RESUMEN

Cells initiate fate decisions during G1 phase by converting extracellular signals into distinctive cell cycle kinetics. The DNA replication timing is determined in G1 phase; lengthened G1 and hastened S phases correlate with increased neurogenic propensity of neural progenitor cells (NPCs), although the underlying molecular control remains elusive. Here, we report that proper G1 phase completion in NPCs requires Brap, a Ras-Erk signaling modulator with ubiquitin E3 ligase activity. We identified Skp2 and Skp2-associated SCF ubiquitin ligase as a key target of Brap-mediated polyubiquitination. Loss of Brap resulted in elevated Skp2, which increased p27Kip1 destruction, leading to G1 phase truncation and premature S phase entry. The aberrantly executed G1 in Brap-mutant NPCs, followed by hindered S phase progression and increased G2 phase arrest, which together prolonged the cell cycle, impeded neuronal differentiation and culminated in microcephaly. These findings demonstrate that neuronal differentiation is potentiated during G1 phase by Brap-directed cascade of events in cell signaling and protein turnover.


Asunto(s)
Diferenciación Celular , Fase G1/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Fase S/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Ratones , Ratones Mutantes , Células-Madre Neurales/citología , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463112

RESUMEN

The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas Portadoras/genética , Morfogénesis , Neuronas Motoras/citología , Proteínas Nucleares/genética , Animales , Modelos Animales de Enfermedad , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Pez Cebra , beta Catenina/metabolismo
9.
Front Cell Neurosci ; 10: 44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973461

RESUMEN

Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA