Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(6): e112202, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36795015

RESUMEN

Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.


Asunto(s)
Ácidos Grasos no Esterificados , Oxilipinas , Humanos , Adipocitos/metabolismo , Autofagia/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/farmacología , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/farmacología , Inflamación/genética , Inflamación/metabolismo , Interleucina-10/genética , Oxilipinas/metabolismo
2.
Blood ; 142(3): 260-273, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37192303

RESUMEN

Although treatment of multiple myeloma (MM) with daratumumab significantly extends the patient's lifespan, resistance to therapy is inevitable. ISB 1342 was designed to target MM cells from patients with relapsed/refractory MM (r/r MM) displaying lower sensitivity to daratumumab. ISB 1342 is a bispecific antibody with a high-affinity Fab binding to CD38 on tumor cells on a different epitope than daratumumab and a detuned scFv domain affinity binding to CD3ε on T cells, to mitigate the risk of life-threatening cytokine release syndrome, using the Bispecific Engagement by Antibodies based on the TCR (BEAT) platform. In vitro, ISB 1342 efficiently killed cell lines with different levels of CD38, including those with a lower sensitivity to daratumumab. In a killing assay where multiple modes of action were enabled, ISB 1342 showed higher cytotoxicity toward MM cells compared with daratumumab. This activity was retained when used in sequential or concomitant combinations with daratumumab. The efficacy of ISB 1342 was maintained in daratumumab-treated bone marrow patient samples showing lower sensitivity to daratumumab. ISB 1342 induced complete tumor control in 2 therapeutic mouse models, unlike daratumumab. Finally, in cynomolgus monkeys, ISB 1342 displayed an acceptable toxicology profile. These data suggest that ISB 1342 may be an option in patients with r/r MM refractory to prior anti-CD38 bivalent monoclonal antibody therapies. It is currently being developed in a phase 1 clinical study.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Animales , Ratones , ADP-Ribosil Ciclasa 1/metabolismo , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T/patología
3.
Cell Mol Life Sci ; 78(9): 4085-4093, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33570672

RESUMEN

Multiple myeloma is a malignancy caused by the clonal expansion of abnormal plasma cells. Myeloma cells have proven to be incredibly successful at manipulating their microenvironment to promote growth and to evade modern therapies. They have evolved to utilise the integral signalling pathways of the bone and bone marrow to drive disease progression. The bone marrow is often described in the context of a single structure that fills the bone cavity and supports normal haematopoiesis. However, within that structure exists two anatomically different niches, the perivascular niche and the endosteal niche. These contain different cell types functioning to support normal immune and blood cell production as well as healthy bone. These cells secrete numerous signalling molecules that can influence myeloma cell biology and behaviour. The endosteal niche is home to specific bone cell lineages and plays a pivotal role in myeloma cell establishment and survival. This review will concentrate on some of the signalling pathways that are hijacked by myeloma cells to shape a favourable environment, and the different influences myeloma cells are exposed to depending on their spatial location within the bone marrow.


Asunto(s)
Médula Ósea/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mieloma Múltiple/patología , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Huesos/patología , Exosomas/metabolismo , Hematopoyesis , Humanos , Mieloma Múltiple/metabolismo
4.
Curr Osteoporos Rep ; 19(5): 494-499, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34319488

RESUMEN

PURPOSE OF REVIEW: For solid tumours such as breast and prostate cancer, and haematological malignancies such as myeloma, bone represents a supportive home, where the cellular crosstalk is known to underlie both tumour growth and survival, and the development of the associated bone disease. The importance of metabolic reprogramming is becoming increasingly recognised, particularly within cancer biology, enabling tumours to adapt to changing environments and pressures. This review will discuss our current understanding of metabolic requirements and adaptations within the tumour-bone microenvironment. RECENT FINDINGS: The bone provides a unique metabolic microenvironment, home to highly energy-intensive processes such as bone resorption and bone formation, both of which are dysregulated in the presence of cancer. Approaches such as metabolomics demonstrate metabolic plasticity in patients with advanced disease. Metabolic crosstalk between tumour cells and surrounding stroma supports disease pathogenesis. There is increasing evidence for a key role for metabolic reprogramming within the tumour-bone microenvironment to drive disease progression. As such, understanding these metabolic adaptations should reveal new therapeutic targets and approaches.


Asunto(s)
Neoplasias Óseas/etiología , Neoplasias Óseas/metabolismo , Microambiente Tumoral/fisiología , Neoplasias Óseas/patología , Glucólisis/fisiología , Humanos
5.
J Cell Physiol ; 233(12): 9159-9166, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29943829

RESUMEN

Obesity has become a global epidemic influencing the establishment and progression of a wide range of diseases, such as diabetes, cardiovascular disease, and cancer. In 2016, International Agency for Research on Cancer reported that obesity is now associated with 13 different cancers, one of which is multiple myeloma (MM), a destructive cancer of plasma cells that predominantly reside in the bone marrow. Obesity is the accumulation of excess body fat, which causes metabolic, endocrine, immunologic, and inflammatory-like changes. Obesity is usually associated with an increase in visceral and/or subcutaneous fat; however, an additional fat depot that also responds to diet-induced changes is bone marrow adipose tissue (BMAT). There have been several studies over the past few decades that have identified BMAT as a key driver in MM progression. Adipocytes secrete numerous adipokines, such as leptin, adiponectin, resistin, adipsin, and visfatin, which when secreted at normal controlled levels have protective properties. However, in obesity these levels of secretion change, coupled with an increase in adipocyte number and size causing a profound and lasting effect on the bone microenvironment, contributing to MM cell growth, survival, and migration as well as potentially fueling bone destruction. Obesity is a modifiable risk factor making it an attractive option for targeted therapy. This review discusses the link between obesity, monoclonal gammopathy of undetermined significance (a benign condition that precedes MM), and myeloma, and the contribution of key adipokines to disease establishment and progression.


Asunto(s)
Adipoquinas/metabolismo , Adiposidad/genética , Mieloma Múltiple/genética , Obesidad/genética , Adipocitos/metabolismo , Adipoquinas/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Humanos , Mieloma Múltiple/complicaciones , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , Microambiente Tumoral/genética
6.
Curr Osteoporos Rep ; 16(6): 635-641, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30229522

RESUMEN

PURPOSE OF REVIEW: MGUS (monoclonal gammopathy of undetermined significance) is a plasma cell disorder characterized by a moderate increase in serum monoclonal protein (≤ 3 g/dL), an increase in bone marrow plasma cell infiltration (≤ 10%) and the absence of any end-organ damage. Although MGUS is considered a benign condition, evidence for clinical consequences is increasing. In this review, we examine the most recent evidence regarding MGUS manifestations and risks and present an overview of MGUS population studies as related to bone disease. Data reveals important MGUS-related bone alterations that may contribute to disease pathogenesis. RECENT FINDINGS: MGUS patients present a rate of 1% per year risk of progression to the more aggressive multiple myeloma (MM) and therefore research has focused on the study of risk factors and the events leading to this progression. However, the exact health implications of MGUS itself and the mechanisms behind them remain unclear. It is now evident that the bone microenvironment plays a key role in hematologic cancers and other oncogenic processes leading to bone metastasis.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada/metabolismo , Mieloma Múltiple/metabolismo , Proteínas de Mieloma/metabolismo , Microambiente Tumoral , Progresión de la Enfermedad , Humanos , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/patología
7.
Curr Urol Rep ; 18(6): 46, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28444639

RESUMEN

PURPOSE OF REVIEW: Since epidemiological studies first demonstrated a potential positive effect of metformin in reducing cancer incidence and mortality, there has been an increased interest in not only better understanding metformin's mechanisms of action but also in exploring its potential anti-cancer effects. In this review, we aim to summarise the current evidence exploring a role for metformin in prostate cancer therapy. RECENT FINDINGS: Preclinical studies have demonstrated a number of antineoplastic biological effects via a range of molecular mechanisms. Data from retrospective epidemiological studies in prostate cancer has been mixed; however, there are several clinical trials currently underway evaluating metformin's role as an anti-cancer agent. Early studies have shown benefits of metformin to inhibit cancer cell proliferation and improve metabolic syndrome in prostate cancer patients receiving androgen deprivation therapy (ADT). While the body of evidence to support a role for metformin in prostate cancer therapy is rapidly growing, there is still insufficient data from randomised trials, which are currently still ongoing. However, evidence so far suggests metformin could be a useful adjuvant agent, particularly in patients on ADT.


Asunto(s)
Antineoplásicos/uso terapéutico , Metformina/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/uso terapéutico , Humanos , Masculino , Síndrome Metabólico/tratamiento farmacológico , Estudios Retrospectivos
8.
Curr Osteoporos Rep ; 14(5): 170-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27566487

RESUMEN

The bone is a common site for metastasis in patients with advanced prostate carcinoma, and provides a 'fertile' milieu which stimulates tumour growth and associated bone disease. For years, the concept of treatment strategies has remained targeting the tumour itself; however, the occurrence of chemoresistance remains a challenge now more than ever. The attraction of targeting the bone microenvironment in order to disrupt tumour localisation and proliferation stems from the idea that stromal cells are superiorly stable at a genetic level, thus decreasing the risk of resistance manifestation. In this review, we will discuss recent findings with regards to the pathogenesis of prostate cancer-induced bone disease and recent therapeutic strategies in an aim to evaluate the ever increasing role of the microenvironment in disease progression.


Asunto(s)
Neoplasias Óseas/secundario , Huesos/metabolismo , Carcinoma/secundario , Neoplasias de la Próstata/patología , Microambiente Tumoral , Adipocitos , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Bevacizumab/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Células de la Médula Ósea , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Denosumab/uso terapéutico , Difosfonatos/uso terapéutico , Humanos , Masculino , Células Madre Mesenquimatosas , Terapia Molecular Dirigida , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Radioisótopos/uso terapéutico , Radio (Elemento)/uso terapéutico
9.
Sens Diagn ; 3(4): 562-584, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646187

RESUMEN

Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).

10.
Blood ; 118(22): 5872-82, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21908434

RESUMEN

The contributions of the host microenvironment to the pathogenesis of multiple myeloma, including progression from the non-malignant disorder monoclonal gammopathy of undetermined significance, are poorly understood. In the present study, microarray analysis of a murine model requiring a unique host microenvironment for myeloma development identified decreased host-derived adiponectin compared with normal mice. In support, clinical analysis revealed decreased serum adiponectin concentrations in monoclonal gammopathy of undetermined significance patients who subsequently progressed to myeloma. We investigated the role of adiponectin in myeloma pathogenesis and as a treatment approach, using both mice deficient in adiponectin and pharmacologic enhancement of circulating adiponectin. Increased tumor burden and bone disease were observed in myeloma-bearing adiponectin-deficient mice, and adiponectin was found to induce myeloma cell apoptosis. The apolipoprotein peptide mimetic L-4F was used for pharmacologic enhancement of adiponectin. L-4F reduced tumor burden, increased survival of myeloma-bearing mice, and prevented myeloma bone disease. Collectively, our studies have identified a novel mechanism whereby decreased host-derived adiponectin promotes myeloma tumor growth and osteolysis. Furthermore, we have established the potential therapeutic benefit of increasing adiponectin for the treatment of myeloma and the associated bone disease.


Asunto(s)
Neoplasias Óseas/terapia , Terapia Molecular Dirigida , Mieloma Múltiple/terapia , Adiponectina/genética , Adiponectina/fisiología , Animales , Enfermedades Óseas/etiología , Enfermedades Óseas/genética , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Línea Celular Tumoral , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Trasplante de Neoplasias , Péptidos/administración & dosificación , Péptidos/uso terapéutico , Células Tumorales Cultivadas , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
JACS Au ; 3(11): 3237-3246, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034969

RESUMEN

Regions of hypoxia occur in most tumors and are a predictor of poor patient prognosis. Hypoxia-activated prodrugs (HAPs) provide an ideal strategy to target the aggressive, hypoxic, fraction of a tumor, while protecting the normal tissue from toxicity. A key challenge associated with the development of novel HAPs, however, is the ability to visualize the delivery of the prodrug to hypoxic regions and determine where it has been activated. Here, we report a modified version of the commonly used nitroimidazole bioreductive group that incorporates the fluoroethyl epitope of the antibody-based hypoxia imaging agent, EF5. Attachment of this group to the red fluorescent dye, dicyanomethylene (DCM), enabled us to correlate the release of the DCM dye with imaging of the reduced bioreductive group using the EF5 antibody. This study confirmed that the antibody was imaging reduction and fragmentation of the pro-fluorophore. We next employed the modified bioreductive group to synthesize a new prodrug of the KDAC inhibitor Panobinostat, EF5-Pano. Release of EF5-Pano in hypoxic multiple myeloma cells was imaged using the EF5 antibody, and the presence of an imaging signal correlated with apoptosis and a reduction in cell viability. Therefore, EF5-Pano is an imageable HAP with a proven cytotoxic effect in multiple myeloma, which could be utilized in future in vivo experiments.

12.
Front Immunol ; 13: 897862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072593

RESUMEN

Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.


Asunto(s)
Mieloma Múltiple , Médula Ósea/metabolismo , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Microambiente Tumoral
13.
Transl Oncol ; 15(1): 101301, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34890968

RESUMEN

Multiple myeloma is a haematological malignancy that is dependent upon interactions within the bone microenvironment to drive tumour growth and osteolytic bone disease. Metformin is an anti-diabetic drug that has attracted attention due to its direct antitumor effects, including anti-myeloma properties. However, the impact of the bone microenvironment on the response to metformin in myeloma is unknown. We have employed in vitro and in vivo models to dissect out the direct effects of metformin in bone and the subsequent indirect myeloma response. We demonstrate how metformin treatment of preosteoblasts increases myeloma cell attachment. Metformin-treated preosteoblasts increased osteopontin (OPN) expression that upon silencing, reduced subsequent myeloma cell adherence. Proliferation markers were reduced in myeloma cells cocultured with metformin-treated preosteoblasts. In vivo, mice were treated with metformin for 4 weeks prior to inoculation of 5TGM1 myeloma cells. Metformin-pretreated mice had an increase in tumour burden, associated with an increase in osteolytic bone lesions and elevated OPN expression in the bone marrow. Collectively, we show that metformin increases OPN expression in preosteoblasts, increasing myeloma cell adherence. In vivo, this translates to an unexpected indirect pro-tumourigenic effect of metformin, highlighting the importance of the interdependence between myeloma cells and cells of the bone microenvironment.

14.
Sci Adv ; 8(8): eabf9096, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213227

RESUMEN

The spread of cancer to bone is invariably fatal, with complex cross-talk between tumor cells and the bone microenvironment responsible for driving disease progression. By combining in silico analysis of patient datasets with metabolomic profiling of prostate cancer cells cultured with bone cells, we demonstrate the changing energy requirements of prostate cancer cells in the bone microenvironment, identifying the pentose phosphate pathway (PPP) as elevated in prostate cancer bone metastasis, with increased expression of the PPP rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD) associated with a reduction in progression-free survival. Genetic and pharmacologic manipulation demonstrates that G6PD inhibition reduces prostate cancer growth and migration, associated with changes in cellular redox state and increased chemosensitivity. Genetic blockade of G6PD in vivo results in reduction of tumor growth within bone. In summary, we demonstrate the metabolic plasticity of prostate cancer cells in the bone microenvironment, identifying the PPP and G6PD as metabolic targets for the treatment of prostate cancer bone metastasis.


Asunto(s)
Glucosafosfato Deshidrogenasa , Neoplasias de la Próstata , Línea Celular Tumoral , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Masculino , Metabolómica , Vía de Pentosa Fosfato/fisiología , Neoplasias de la Próstata/genética , Microambiente Tumoral
15.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36612090

RESUMEN

Novel biomarkers for tumour burden and bone disease are required to guide clinical management of plasma cell dyscrasias. Recently, bone turnover markers (BTMs) and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) have been explored, although their role in the prospective assessment of multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) is unclear. Here, we conducted a pilot observational cohort feasibility study combining serum BTMs and DW-MRI in addition to standard clinical assessment. Fifty-five patients were recruited (14 MGUS, 15 smouldering MM, 14 new MM and 12 relapsed MM) and had DW-MRI and serum biomarkers (P1NP, CTX-1, ALP, DKK1, sclerostin, RANKL:OPG and BCMA) measured at baseline and 6-month follow-up. Serum sclerostin positively correlated with bone mineral density (r = 0.40-0.54). At baseline, serum BCMA correlated with serum paraprotein (r = 0.42) and serum DKK1 correlated with serum free light chains (r = 0.67); the longitudinal change in both biomarkers differed between International Myeloma Working Group (IMWG)-defined responders and non-responders. Myeloma Response Assessment and Diagnosis System (MY-RADS) scoring of serial DW-MRI correlated with conventional IMWG response criteria for measuring longitudinal changes in tumour burden. Overall, our pilot study suggests candidate radiological and serum biomarkers of tumour burden and bone loss in MM/MGUS, which warrant further exploration in larger cohorts to validate the findings and to better understand their clinical utility.

16.
Nat Commun ; 13(1): 7868, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550101

RESUMEN

Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.


Asunto(s)
Enfermedades Óseas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Factor 3 Asociado a Receptor de TNF/metabolismo , Calidad de Vida , Osteoclastos/metabolismo , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/metabolismo , Autofagia , Glicoesfingolípidos/metabolismo
17.
Best Pract Res Clin Endocrinol Metab ; 35(4): 101541, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34006450

RESUMEN

Multiple myeloma (MM) is a haematological malignancy characterised by the proliferation and accumulation of terminally differentiated abnormal plasma cells in the bone marrow. Patients suffer from bone pain, factures, anaemia, osteolytic lesions and renal failure. Despite recent advancement in therapy MM remains an incurable disease due to the emergences of drug resistance and frequent relapse. For many decades, research has been heavily focused on understanding the relationship between bone cells such as osteoblast, osteocytes and osteoclasts and the infiltrating tumour cells. However, it is now clear that the tumour-supportive bone microenvironment including cellular and non-cellular components play an important role in driving MM progression and bone disease. One of the most abundant cell types in the bone microenvironment is the bone marrow adipocyte (BMAd). Once thought of as inert space filling cells, they have now been recognised as having specialised functions, signalling in an autocrine, paracrine and endocrine manner to support normal systemic homeostasis. BMAds are both an energy store and a source of secreted adipokines and bioactive substances, MM cells are able to hijack this metabolic machinery to fuel migration, growth and survival. With global obesity on the rise, it has never been more important to further understand the contribution these cells have in both normal and disease settings. The aim of this review is to summarise the large body of emerging evidence supporting the interplay between BMAds and MM cells and to delineate how they fit into the vicious cycle of disease.


Asunto(s)
Médula Ósea , Mieloma Múltiple , Adiposidad , Humanos , Recurrencia Local de Neoplasia , Obesidad , Microambiente Tumoral
18.
JBMR Plus ; 4(4): e10356, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32258970

RESUMEN

Bone is the most common site for cancer metastasis. Understanding the interactions within the complex, heterogeneous bone-tumor microenvironment is essential for the development of new therapeutics. Various animal models of tumor-induced bone disease are routinely used to provide valuable information on the relationship between cancer cells and the skeleton. However, new model systems exist that offer an alternative approach to the use of animals and might more accurately reveal the cellular interactions occurring within the human bone-tumor niche. This review highlights replacement models that mimic the bone microenvironment and where cancer metastases and tumor growth might be assessed alongside bone turnover. Such culture models include the use of calcified regions of animal tissue and scaffolds made from bone mineral hydroxyapatite, synthetic polymers that can be manipulated during manufacture to create structures resembling trabecular bone surfaces, gel composites that can be modified for stiffness and porosity to resemble conditions in the tumor-bone microenvironment. Possibly the most accurate model system involves the use of fresh human bone samples, which can be cultured ex vivo in the presence of human tumor cells and demonstrate similar cancer cell-bone cell interactions as described in vivo. In addition, the use of mathematical modeling and computational biology approaches provide an alternative to preliminary animal testing. The use of such models offers the capacity to mimic significant elements of the human bone-tumor environment, and complement, refine, or replace the use of preclinical models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

19.
Front Oncol ; 10: 292, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231998

RESUMEN

Identifying new mechanisms that underlie the complex process of metastasis is vital to combat this fatal step in prostate cancer (PCa) progression. Small non-coding RNAs are emerging as important regulators of tumor cell biology. Here we take an integrative approach to elucidate the contribution of microRNAs to metastatic progression, combining transcriptomic analysis with functional screens for migration and morphology. We developed high-content microscopy, high-throughput functional screens for migration and morphology in PCa cells using a microRNA library. RNA-Seq analysis of paired epithelial and mesenchymal PCa cells identified differential expression of 200 microRNAs. Data integration identified two microRNAs that inhibited migration, induced an epithelial-like morphology and were increased in epithelial PCa cells. An overrepresentation of the AAGUGC seed sequence was detected in all three datasets. Analysis of published datasets of patients with PCa identified microRNAs of clinical relevance. The integration of high-throughput functional and expression analyses identifies microRNAs with clinical significance that modulate metastatic behavior in PCa.

20.
J Bone Miner Res ; 35(5): 942-955, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31886918

RESUMEN

Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor-bone interface at later stages of disease. Myeloma cells were found to uptake BMAd-derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd-derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma-suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF-α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF-α downregulates BMAd-derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Asunto(s)
Neoplasias Óseas , Mieloma Múltiple , Adipocitos , Adiponectina , Animales , Médula Ósea , Células de la Médula Ósea , Ratones , Microambiente Tumoral , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA