Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 175: 105916, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336243

RESUMEN

Personalized medicine intensifies interest in experimental paradigms that delineate sources of phenotypic variation. The paradigm of environmental enrichment allows for comparisons among differently housed laboratory rodents to unravel environmental effects on brain plasticity and related phenotypes. We have developed a new longitudinal variant of this paradigm, which allows to investigate the emergence of individuality, the divergence of individual behavioral trajectories under a constant genetic background and in a shared environment. We here describe this novel method, the "Individuality Paradigm," which allows to investigate mechanisms that drive individuality. Various aspects of individual activity are tracked over time to identify the contribution of the non-shared environment, that is the extent to which the experience of an environment differs between individual members of a population. We describe the design of this paradigm in detail, lay out its scientific potential beyond the published studies and discuss how it differs from other approaches to study individuality. The custom-built cage system, commercially marketed as "ColonyRack", allows mice to roam freely between 70 cages through connector tubes equipped with ring antennas that detect each animal's ID from an RFID transponder implanted in the animal's neck. The system has a total floor area of 2.74 m2 and its spatial resolution corresponds to the size of the individual cages. Spatiotemporally resolved antenna contacts yield longitudinal measures of individual behavior, including the powerful measure of roaming entropy (RE). The Individuality Paradigm provides a rodent model of the making of individuality and the impact of the 'non-shared' environment on life-course development.


Asunto(s)
Individualidad , Plasticidad Neuronal , Animales , Ratones
2.
Neurobiol Dis ; 75: 131-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25555543

RESUMEN

Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL.


Asunto(s)
CADASIL/fisiopatología , Hipocampo/fisiopatología , Neurogénesis/fisiología , Receptores Notch/metabolismo , Envejecimiento/patología , Envejecimiento/fisiología , Animales , CADASIL/patología , Supervivencia Celular/fisiología , Células Cultivadas , Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hipocampo/irrigación sanguínea , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Neuronas/patología , Neuronas/fisiología , Cloruro de Potasio/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3 , Receptores Notch/genética
3.
Biol Psychiatry ; 94(9): 721-731, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37076091

RESUMEN

BACKGROUND: One-third of the risk for Alzheimer's disease is explained by environment and lifestyle, but Alzheimer's disease pathology might also affect lifestyle and thereby impair the individual potential for health behavior and prevention. METHODS: We examined in mice how the AppNL-F/NL-F (NL-F) knockin mutation affects the presymptomatic response to environmental enrichment (ENR) as an experimental paradigm addressing nongenetic factors. We assessed the emergence of interindividual phenotypic variation under the condition that both the genetic background and the shared environment were held constant, thereby isolating the contribution of individual behavior (nonshared environment). RESULTS: After 4 months of ENR, the mean and variability of plasma ApoE were increased in NL-F mice, suggesting a presymptomatic variation in pathogenic processes. Roaming entropy as a measure of behavioral activity was continuously assessed with radiofrequency identification (RFID) technology and revealed reduced habituation and variance in NL-F mice compared with control animals, which do not carry a Beyreuther/Iberian mutation. Intraindividual variation decreased, while behavioral stability was reduced in NL-F mice. Seven months after discontinuation of ENR, we found no difference in plaque size and number, but ENR increased variance in hippocampal plaque counts in NL-F mice. A reactive increase in adult hippocampal neurogenesis in NL-F mice, known from other models, was normalized by ENR. CONCLUSIONS: Our data suggest that while NL-F has early effects on individual behavioral patterns in response to ENR, there are lasting effects on cellular plasticity even after the discontinuation of ENR. Hence, early behavior matters for maintaining individual behavioral trajectories and brain plasticity even under maximally constrained conditions.


Asunto(s)
Enfermedad de Alzheimer , Individualidad , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Ratones Transgénicos
4.
Front Aging Neurosci ; 13: 617733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093162

RESUMEN

We and others have reported that Notch3 is a regulator of adult hippocampal neurogenesis. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), the most common genetic form of vascular dementia, is caused by mutations in Notch3. The present study intended to investigate whether there is a correlation between altered adult hippocampal neurogenesis and spatial memory performance in CADASIL transgenic mice. To overcome visual disabilities that hampered behavioral testing of the original mice (on an FVB background) we back-crossed the existing TgN3 R169C CADASIL mouse model onto the C57BL/6J background. These animals showed an age-dependent increase in the pathognomonic granular osmiophilic material (GOM) deposition in the hippocampus. Analysis in the Morris water maze task at an age of 6 and 12 months revealed deficits in re-learning and perseverance in the CADASIL transgenic mice. Overexpression of Notch3 alone resulted in deficits in the use of spatial strategies and diminished adult neurogenesis in both age groups. The additional CADASIL mutation compensated the effect on strategy usage but not on adult neurogenesis. In brain bank tissue samples from deceased CADASIL patients we found signs of new neurons, as assessed by calretinin immunohistochemistry, but no conclusive quantification was possible. In summary, while our study confirmed the role of Notch3 in adult neurogenesis, we found a specific effect of the CADASIL mutation only on the reversion of the Notch3 effect on behavior, particularly visible at 6 months of age, consistent with a loss of function. The mutation did not revert the Notch3-dependent changes in adult neurogenesis or otherwise affected adult neurogenesis in this model.

5.
MethodsX ; 7: 100805, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32071891

RESUMEN

Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional "neurosphere" culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: •The synthesis and characterization of heparin based microcarriers.•A "static" 3D culture method for that does not require spinner flask equipment.•"Dynamic" culture in which cell loaded microcarriers are transferred to a spinner flask.

6.
Biomaterials ; 230: 119540, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31759681

RESUMEN

Adult neurogenesis and the neurogenic niche in the dentate gyrus are subjects of much research interest. Enhancing our knowledge of this niche process and the role played by this unique microenvironment would further our understanding of plasticity and its relevance for cognition in health and disease. The complex three-dimensional (3D) nature of the niche microenvironment is poorly recapitulated in current cell culture experimental procedures. Neural precursor cells (NPCs) are cultured either on two-dimensional (2D) surfaces, where cells quickly reach confluency and passaging is required, or as 3D neurospheres, with the limitation of poor diffusion of nutrients and thus partial differentiation of cells over time. Herein, we culture NPCs on microscale scaffolds termed microcarriers, composed of poly(ethylene glycol) and heparin, designed to more closely represent the 3D environment of the neurogenic niche. The interconnected macroporous structure of the microcarriers allows NPCs to attach to their pore walls with subsequent continuous proliferation (analyzed up to 28 days) without formation of a necrotic core. Removal of basic fibroblast growth factor and epidermal growth factor from the culture medium results in differentiation of the NPCs. Unlike 2D culture, a high percentage of neurons was achieved on the microcarriers (22% MAP2 positive cells) indicating that these 3D microscale scaffolds give a more conducive environment for neuronal differentiation. Microcarrier culture of NPCs allows long-term cell expansion and better differentiation, which provides superior culture conditions for studying/modelling the neurogenic niche.


Asunto(s)
Diferenciación Celular , Heparina , Células-Madre Neurales , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Neuronas/efectos de los fármacos , Andamios del Tejido
7.
Elife ; 72018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30362941

RESUMEN

One manifestation of individualization is a progressively differential response of individuals to the non-shared components of the same environment. Individualization has practical implications in the clinical setting, where subtle differences between patients are often decisive for the success of an intervention, yet there has been no suitable animal model to study its underlying biological mechanisms. Here we show that enriched environment (ENR) can serve as a model of brain individualization. We kept 40 isogenic female C57BL/6JRj mice for 3 months in ENR and compared these mice to an equally sized group of standard-housed control animals, looking at the effects on a wide range of phenotypes in terms of both means and variances. Although ENR influenced multiple parameters and restructured correlation patterns between them, it only increased differences among individuals in traits related to brain and behavior (adult hippocampal neurogenesis, motor cortex thickness, open field and object exploration), in agreement with the hypothesis of a specific activity-dependent development of brain individuality.


Asunto(s)
Conducta Animal , Variación Biológica Individual , Encéfalo/anatomía & histología , Encéfalo/fisiología , Exposición a Riesgos Ambientales , Fenotipo , Animales , Femenino , Ratones Endogámicos C57BL , Modelos Animales
8.
Stem Cell Res ; 15(3): 514-521, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26448270

RESUMEN

The niche concept of stem cell biology proposes a functional unit between the precursor cells and their local microenvironment, to which several cell types might contribute by cell-cell contacts, extracellular matrix, and humoral factors. We here established three co-culture models (with cell types separated by membrane) for both adherent monolayers and neurospheres to address the potential influence of different niche cell types in the neurogenic zone of the adult hippocampus of mice. Astrocytes and endothelial cells enhanced precursor cell proliferation and neurosphere formation. Endothelial factors also led to a prolonged increase in proliferation after growth factor withdrawal, which otherwise induces differentiation. All niche cell types enhanced cell survival in monolayer cultures, endothelial cells also stimulated neuronal differentiation. A parallel trend elicited by astrocytes did not reach conventional statistical significance. Pericytes had variable effects here. We did not observe changes in differentiation in neurosphere co-cultures. In summary, our data indicate that in precursor cell culture protocols survival could be improved by adding as yet unknown factors physiologically contributed by astrocytes and endothelial cells. Our findings also underscore the complexity of the niche and the differential impact of factors from the different sources on distinct aspects of neuronal development. With the help of the models presented here, identification of these factors and their specific biological activity can now be initiated.


Asunto(s)
Astrocitos/metabolismo , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Animales , Astrocitos/citología , Diferenciación Celular , Proliferación Celular , Células Endoteliales/citología , Ratones , Neurogénesis , Pericitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA