Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 158(4): 822-832, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126787

RESUMEN

Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.


Asunto(s)
Citoplasma/química , Microscopía de Fuerza Atómica/métodos , Animales , Fenómenos Biomecánicos , Embrión de Mamíferos/citología , Fibroblastos/química , Ratones , Proteínas/química , Vimentina/química
2.
Proc Natl Acad Sci U S A ; 120(28): e2301285120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399392

RESUMEN

Yes-associated protein (YAP) is a key mechanotransduction protein in diverse physiological and pathological processes; however, a ubiquitous YAP activity regulatory mechanism in living cells has remained elusive. Here, we show that YAP nuclear translocation is highly dynamic during cell movement and is driven by nuclear compression arising from cell contractile work. We resolve the mechanistic role of cytoskeletal contractility in nuclear compression by manipulation of nuclear mechanics. Disrupting the linker of nucleoskeleton and cytoskeleton complex reduces nuclear compression for a given contractility and correspondingly decreases YAP localization. Conversely, decreasing nuclear stiffness via silencing of lamin A/C increases nuclear compression and YAP nuclear localization. Finally, using osmotic pressure, we demonstrated that nuclear compression even without active myosin or filamentous actin regulates YAP localization. The relationship between nuclear compression and YAP localization captures a universal mechanism for YAP regulation with broad implications in health and biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Señalizadoras YAP , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mecanotransducción Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Citoesqueleto/metabolismo
3.
Biophys J ; 123(18): 3217-3230, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39033326

RESUMEN

Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.


Asunto(s)
Microscopía , Microscopía/métodos , Fenómenos Biomecánicos , Animales , Aprendizaje Profundo , Fenómenos Mecánicos , Ratones , Forma de la Célula , Humanos
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34887356

RESUMEN

Membrane invagination and vesicle formation are key steps in endocytosis and cellular trafficking. Here, we show that endocytic coat proteins with prion-like domains (PLDs) form hemispherical puncta in the budding yeast, Saccharomyces cerevisiae These puncta have the hallmarks of biomolecular condensates and organize proteins at the membrane for actin-dependent endocytosis. They also enable membrane remodeling to drive actin-independent endocytosis. The puncta, which we refer to as endocytic condensates, form and dissolve reversibly in response to changes in temperature and solution conditions. We find that endocytic condensates are organized around dynamic protein-protein interaction networks, which involve interactions among PLDs with high glutamine contents. The endocytic coat protein Sla1 is at the hub of the protein-protein interaction network. Using active rheology, we inferred the material properties of endocytic condensates. These experiments show that endocytic condensates are akin to viscoelastic materials. We use these characterizations to estimate the interfacial tension between endocytic condensates and their surroundings. We then adapt the physics of contact mechanics, specifically modifications of Hertz theory, to develop a quantitative framework for describing how interfacial tensions among condensates, the membrane, and the cytosol can deform the plasma membrane to enable actin-independent endocytosis.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Priones/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular , Proteínas del Citoesqueleto/genética , Citosol/fisiología , Regulación Fúngica de la Expresión Génica , Glutamina/química , Mecanotransducción Celular , Conformación Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sustancias Viscoelásticas
5.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34028539

RESUMEN

While diverse cellular components have been identified as mechanotransduction elements, the deformation of the nucleus itself is a critical mechanosensory mechanism, implying that nuclear stiffness is essential in determining responses to intracellular and extracellular stresses. Although the nuclear membrane protein lamin A/C is known to contribute to nuclear stiffness, bulk moduli of nuclei have not been reported for various levels of lamin A/C. Here, we measure the nuclear bulk moduli as a function of lamin A/C expression and applied osmotic stress, revealing a linear dependence within the range of 2-4 MPa. We also find that the nuclear compression is anisotropic, with the vertical axis of the nucleus being more compliant than the minor and major axes in the substrate plane. We then related the spatial distribution of lamin A/C with submicron 3D nuclear envelope deformation, revealing that local areas of the nuclear envelope with higher density of lamin A/C have correspondingly lower local deformations. These findings describe the complex dispersion of nuclear deformations as a function of lamin A/C expression and distribution, implicating a lamin A/C role in mechanotransduction. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Lamina Tipo A , Mecanotransducción Celular , Núcleo Celular/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo
6.
Biophys J ; 121(4): 629-643, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999131

RESUMEN

Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Microscopía , Estrés Mecánico
7.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L323-L330, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774304

RESUMEN

In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.


Asunto(s)
Pulmón/fisiología , Microscopía , Contracción Muscular/fisiología , Tracción , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Broncoconstricción/fisiología , Humanos , Músculo Liso/fisiología , Estrés Mecánico , Porcinos
8.
Proc Natl Acad Sci U S A ; 114(39): E8147-E8154, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28900011

RESUMEN

Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.


Asunto(s)
Biología Computacional , Modelos Teóricos , Contracción Muscular/fisiología , Músculos/fisiología , Miosinas/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Fenómenos Biomecánicos/fisiología , Humanos
9.
Lab Invest ; 99(1): 138-145, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30310180

RESUMEN

Vascular leakage, protein exudation, and edema formation are events commonly triggered by inflammation and facilitated by gaps that form between adjacent endothelial cells (ECs) of the vasculature. In such paracellular gap formation, the role of EC contraction is widely implicated, and even therapeutically targeted. However, related measurement approaches remain slow, tedious, and complex to perform. Here, we have developed a multiplexed, high-throughput screen to simultaneously quantify paracellular gaps, EC contractile forces, and to visualize F-actin stress fibers, and VE-cadherin. As proof-of-principle, we examined barrier-protective mechanisms of the Rho-associated kinase inhibitor, Y-27632, and the canonical agonist of the Tie2 receptor, Angiopoietin-1 (Angpt-1). Y-27632 reduced EC contraction and actin stress fiber formation, whereas Angpt-1 did not. Yet both agents reduced thrombin-, LPS-, and TNFα-induced paracellular gap formation. This unexpected result suggests that Angpt-1 can achieve barrier defense without reducing EC contraction, a mechanism that has not been previously described. This insight was enabled by the multiplex nature of the force-based platform. The high-throughput format we describe should accelerate both mechanistic studies and the screening of pharmacological modulators of endothelial barrier function.


Asunto(s)
Citoesqueleto de Actina/fisiología , Células Endoteliales/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Amidas , Angiopoyetina 1 , Antígenos CD/metabolismo , Cadherinas/metabolismo , Endotelio Vascular/fisiología , Humanos , Uniones Intercelulares/fisiología , Microscopía Fluorescente , Permeabilidad , Cultivo Primario de Células , Piridinas
10.
Biophys J ; 114(9): 2194-2199, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742412

RESUMEN

Actomyosin contractility is an essential element of many aspects of cellular biology and manifests as traction forces that cells exert on their surroundings. The central role of these forces makes them a novel principal therapeutic target in diverse diseases. This requires accurate and higher-capacity measurements of traction forces; however, existing methods are largely low throughput, limiting their utility in broader applications. To address this need, we employ Fourier-transform traction force microscopy in a parallelized 96-well format, which we refer to as contractile force screening. Critically, rather than the frequently employed hydrogel polyacrylamide, we fabricate these plates using polydimethylsiloxane rubber. Key to this approach is that the polydimethylsiloxane used is very compliant, with a lower-bound Young's modulus of ∼0.4 kPa. We subdivide these monolithic substrates spatially into biochemically independent wells, creating a uniform multiwell platform for traction force screening. We demonstrate the utility and versatility of this platform by quantifying the compound and dose-dependent contractility responses of human airway smooth muscle cells and retinal pigment epithelial cells. By directly quantifying the endpoint of therapeutic intent, airway-smooth-muscle contractile force, this approach fills an important methodological void in current screening approaches for bronchodilator drug discovery, and, more generally, in measuring contractile response for a broad range of cell types and pathologies.


Asunto(s)
Dimetilpolisiloxanos/química , Elastómeros/química , Fenómenos Mecánicos , Nylons/química , Miocitos del Músculo Liso/citología
11.
Proc Natl Acad Sci U S A ; 112(21): 6619-24, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25918384

RESUMEN

The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease.


Asunto(s)
Actinina/fisiología , Actinina/química , Actinina/genética , Actinas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Fenómenos Biomecánicos , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Reactivos de Enlaces Cruzados , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Cinética , Microscopía Confocal , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Blood ; 125(5): 860-8, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25411426

RESUMEN

Bone marrow megakaryocytes produce platelets by extending long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Although microtubules are known to regulate platelet production, the underlying mechanism of proplatelet elongation has yet to be resolved. Here we report that proplatelet formation is a process that can be divided into repetitive phases (extension, pause, and retraction), as revealed by differential interference contrast and fluorescence loss after photoconversion time-lapse microscopy. Furthermore, we show that microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein under static and physiological shear stress by using fluorescence recovery after photobleaching in proplatelets with fluorescence-tagged ß1-tubulin. A refined understanding of the specific mechanisms regulating platelet production will yield strategies to treat patients with thrombocythemia or thrombocytopenia.


Asunto(s)
Plaquetas/metabolismo , Dineínas Citoplasmáticas/metabolismo , Megacariocitos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Plaquetas/citología , Diferenciación Celular , Citoplasma/metabolismo , Dineínas Citoplasmáticas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Expresión Génica , Mecanotransducción Celular , Megacariocitos/citología , Ratones , Microscopía de Interferencia , Microtúbulos/química , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Mecánico , Trombopoyesis/genética , Tubulina (Proteína)/genética
13.
Nucleus ; 15(1): 2374854, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38951951

RESUMEN

The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Humanos , Núcleo Celular/metabolismo , Animales , Regulación de la Expresión Génica
14.
Biophys J ; 105(7): 1562-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24094397

RESUMEN

The mechanical properties of a cell determine many aspects of its behavior, and these mechanics are largely determined by the cytoskeleton. Although the contribution of actin filaments and microtubules to the mechanics of cells has been investigated in great detail, relatively little is known about the contribution of the third major cytoskeletal component, intermediate filaments (IFs). To determine the role of vimentin IF (VIF) in modulating intracellular and cortical mechanics, we carried out studies using mouse embryonic fibroblasts (mEFs) derived from wild-type or vimentin(-/-) mice. The VIFs contribute little to cortical stiffness but are critical for regulating intracellular mechanics. Active microrheology measurements using optical tweezers in living cells reveal that the presence of VIFs doubles the value of the cytoplasmic shear modulus to ∼10 Pa. The higher levels of cytoplasmic stiffness appear to stabilize organelles in the cell, as measured by tracking endogenous vesicle movement. These studies show that VIFs both increase the mechanical integrity of cells and localize intracellular components.


Asunto(s)
Citoplasma/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Vimentina/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/ultraestructura , Fibroblastos/ultraestructura , Ratones , Ratones Noqueados , Pinzas Ópticas , Transporte de Proteínas , Reología , Resistencia al Corte , Vimentina/genética
15.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503095

RESUMEN

The role of morphogenetic forces in cell fate specification is an area of intense interest. Our prior studies suggested that the development of high cell-cell tension in human embryonic stem cells (hESC) colonies permits the Src-mediated phosphorylation of junctional ß-catenin that accelerates its release to potentiate Wnt-dependent signaling critical for initiating mesoderm specification. Using an ectopically expressed nonphosphorylatable mutant of ß-catenin (Y654F), we now provide direct evidence that impeding tension-dependent Src-mediated ß-catenin phosphorylation impedes the expression of Brachyury (T) and the epithelial-to-mesenchymal transition (EMT) necessary for mesoderm specification. Addition of exogenous Wnt3a or inhibiting GSK3ß activity rescued mesoderm expression, emphasizing the importance of force dependent Wnt signaling in regulating mechanomorphogenesis. Our work provides a framework for understanding tension-dependent ß-catenin/Wnt signaling in the self-organization of tissues during developmental processes including gastrulation.

16.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37369604

RESUMEN

Collective cell migration is not only important for development and tissue homeostasis but can also promote cancer metastasis. To migrate collectively, cells need to coordinate cellular extensions and retractions, adhesion sites dynamics, and forces generation and transmission. Nevertheless, the regulatory mechanisms coordinating these processes remain elusive. Using A431 carcinoma cells, we identify the kinase MAP4K4 as a central regulator of collective migration. We show that MAP4K4 inactivation blocks the migration of clusters, whereas its overexpression decreases cluster cohesion. MAP4K4 regulates protrusion and retraction dynamics, remodels the actomyosin cytoskeleton, and controls the stability of both cell-cell and cell-substrate adhesion. MAP4K4 promotes focal adhesion disassembly through the phosphorylation of the actin and plasma membrane crosslinker moesin but disassembles adherens junctions through a moesin-independent mechanism. By analyzing traction and intercellular forces, we found that MAP4K4 loss of function leads to a tensional disequilibrium throughout the cell cluster, increasing the traction forces and the tension loading at the cell-cell adhesions. Together, our results indicate that MAP4K4 activity is a key regulator of biomechanical forces at adhesion sites, promoting collective migration.


Asunto(s)
Uniones Célula-Matriz , Citoesqueleto , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Fosforilación
17.
J Am Chem Soc ; 134(10): 4983-9, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22356466

RESUMEN

Micrometer-sized hydrogel particles that contain living cells can be fabricated with exquisite control through the use of droplet-based microfluidics and bioinert polymers such as polyethyleneglycol (PEG) and hyperbranched polyglycerol (hPG). However, in existing techniques, the microgel gelation is often achieved through harmful reactions with free radicals. This is detrimental for the viability of the encapsulated cells. To overcome this limitation, we present a technique that combines droplet microfluidic templating with bio-orthogonal thiol-ene click reactions to fabricate monodisperse, cell-laden microgel particles. The gelation of these microgels is achieved via the nucleophilic Michael addition of dithiolated PEG macro-cross-linkers to acrylated hPG building blocks and does not require any initiator. We systematically vary the microgel properties through the use of PEG linkers with different molecular weights along with different concentrations of macromonomers to investigate the influence of these parameters on the viability and proliferation of encapsulated yeast cells. We also demonstrate the encapsulation of mammalian cells including fibroblasts and lymphoblasts.


Asunto(s)
Geles , Microfluídica/métodos , Animales , Células Cultivadas , Cinética , Mamíferos , Saccharomyces cerevisiae/química
18.
Front Cell Dev Biol ; 10: 932510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36200037

RESUMEN

During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.

19.
Science ; 373(6560): 1229-1234, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516787

RESUMEN

Glasses have numerous applications because of their exceptional transparency and stiffness; however, poor fracture, impact resistance, and mechanical reliability limit the range of their applications. Recent bioinspired glasses have shown superior mechanical performance, but they still suffer from reduced optical quality. Here, we present a nacreous glass composite that offers a combination of strength, toughness, and transparency. Micrometer-sized glass tablets and poly(methyl methacrylate) (PMMA) were mixed and structured by centrifugation, creating dense PMMA-glass layers. A transparent composite was created by tuning the refractive index of PMMA to that of glass and using chemical functionalization to create continuous interfaces. The fabrication method is robust and scalable, and the composite may prove to be a glass alternative in diverse applications.

20.
ACS Biomater Sci Eng ; 7(11): 5288-5300, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661396

RESUMEN

Reinforced extracellular matrix (ECM)-based hydrogels recapitulate several mechanical and biochemical features found in the tumor microenvironment (TME) in vivo. While these gels retain several critical structural and bioactive molecules that promote cell-matrix interactivity, their mechanical properties tend toward the viscous regime limiting their ability to retain ordered structural characteristics when considered as architectured scaffolds. To overcome this limitation characteristic of pure ECM hydrogels, we present a composite material containing alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, as rheological modifiers which impart mechanical integrity to the biologically active decellularized ECM (dECM). After an optimization process, the reinforced gel proposed is mechanically stable and bioprintable and has a stiffness within the expected physiological values. Our hydrogel's elastic modulus has no significant difference when compared to tumors induced in preclinical xenograft head and neck squamous cell carcinoma (HNSCC) mouse models. The bioprinted cell-laden model is highly reproducible and allows proliferation and reorganization of HNSCC cells while maintaining cell viability above 90% for periods of nearly 3 weeks. Cells encapsulated in our bioink produce spheroids of at least 3000 µm2 of cross-sectional area by day 15 of culture and are positive for cytokeratin in immunofluorescence quantification, a common marker of HNSCC model validation in 2D and 3D models. We use this in vitro model system to evaluate the standard-of-care small molecule therapeutics used to treat HNSCC clinically and report a 4-fold increase in the IC50 of cisplatin and an 80-fold increase for 5-fluorouracil compared to monolayer cultures. Our work suggests that fabricating in vitro models using reinforced dECM provides a physiologically relevant system to evaluate malignant neoplastic phenomena in vitro due to the physical and biological features replicated from the source tissue microenvironment.


Asunto(s)
Bioimpresión , Animales , Matriz Extracelular , Hidrogeles , Ratones , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA