Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38324473

RESUMEN

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Asunto(s)
Corteza Cerebral , Empalme del ARN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Nucleic Acids Res ; 45(7): 4120-4130, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27994030

RESUMEN

SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2 pre-mRNA, both within the mouse cortex and in vitro. Protein domain-swap experiments identify a region including the STAR domain that differentiates SLM2 and Sam68 activity in splicing target selection, and confirm that this is not established via the variant amino acids involved in RNA contact. However, far fewer SLM2 and Sam68 RNA binding sites flank the Neurexin2 AS4 exon, compared with those flanking the Neurexin1 and Neurexin3 AS4 exons under joint control by both Sam68 and SLM2. Doubling binding site numbers switched paralog sensitivity, by placing the Neurexin2 AS4 exon under joint splicing control by both Sam68 and SLM2. Our data support a model where the density of shared RNA binding sites around a target exon, rather than different paralog-specific protein-RNA binding sites, controls functional target specificity between SLM2 and Sam68 on the Neurexin2 AS4 exon. Similar models might explain differential control by other splicing regulators within families of paralogs with indistinguishable RNA binding sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Animales , Sitios de Unión , Exones , Intrones , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Dominios Proteicos , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Especificidad por Sustrato
3.
BMC Genomics ; 19(1): 276, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29678151

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. RESULTS: A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. CONCLUSIONS: Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/citología , Isoformas de ARN/genética , ARN Largo no Codificante/genética , Adulto , Regulación hacia Abajo , Exones/genética , Sitios Genéticos/genética , Humanos , Neuronas/citología , Análisis de Secuencia de ARN , Factores de Tiempo , Transcripción Genética
4.
Biochem Soc Trans ; 44(4): 1066-72, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27528753

RESUMEN

STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system).


Asunto(s)
Sistema Nervioso Central/metabolismo , Empalme del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/genética , Humanos , Glicoproteína Asociada a Mielina/genética , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa , Filogenia , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
5.
PLoS Genet ; 9(4): e1003474, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637638

RESUMEN

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.


Asunto(s)
Precursores del ARN , Empalme del ARN , Empalme Alternativo , Animales , Encéfalo/metabolismo , Exones , Humanos , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Nucleic Acids Res ; 41(22): 10170-84, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038356

RESUMEN

Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2ß, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2ß and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5' splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle.


Asunto(s)
Empalme Alternativo , Meiosis/genética , Testículo/metabolismo , Animales , Secuencia de Bases , Exones , Masculino , Ratones , Datos de Secuencia Molecular , Isoformas de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Transcriptoma
7.
Biochem Soc Trans ; 42(4): 1152-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110018

RESUMEN

Tra2 proteins regulate pre-mRNA splicing in vertebrates and invertebrates, and are involved in important processes ranging from brain development in mice to sex determination in fruitflies. In structure Tra2 proteins contain two RS domains (domains enriched in arginine and serine residues) flanking a central RRM (RNA recognition motif). Understanding the mechanisms of how Tra2 proteins work to control splicing is one of the key requirements to understand their biology. In the present article, we review what is known about how Tra2 proteins regulate splicing decisions in mammals and fruitflies.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Empalme Alternativo , Animales , Drosophila
8.
PLoS Genet ; 7(12): e1002390, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194695

RESUMEN

Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2ß (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2ß is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2ß binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl); Nestin-Cre(tg/+)). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2ß regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2ß binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2ß protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2ß. Versions of Tra2ß lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2ß protein.


Asunto(s)
Desarrollo Embrionario/genética , Exones/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Secuencia de Bases , Sitios de Unión , Encéfalo/anomalías , Proteínas de Ciclo Celular , Diferenciación Celular , Roturas del ADN de Doble Cadena , Evolución Molecular , Células Germinativas/citología , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Factores de Empalme Serina-Arginina , Espermatogénesis/genética
9.
J Cell Sci ; 123(Pt 1): 40-50, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20016065

RESUMEN

RBMY is a male germline RNA binding protein and potential alternative splicing regulator, but the lack of a convenient biological system has made its cellular functions elusive. We found that human RBMY fused to green fluorescent protein was strictly nuclear in transfected cells, but spatially enriched in areas around nuclear speckles with some components of the exon junction complex (EJC). Human RBMY (hRBMY) and the EJC components Magoh and Y14 also physically interacted but, unlike these two proteins, hRBMY protein did not shuttle to the cytoplasm. In addition, it relocalised into nucleolar caps after inhibition of RNA polymerase II transcription. Protein interactions were also detected between RBMY and splicing factors 9G8 and transformer-2 protein homolog beta (Tra2-beta), mediated by multiple regions of the RBMY protein that contain serine/arginine-rich dipeptides, but not by the single region lacking such dipeptides. These interactions modulated the splicing of several pre-mRNAs regulated by 9G8 and Tra2-beta. Importantly, ectopic expression of hRBMY stimulated the inclusion of a testis-enriched exon from the Acinus gene, whereas 9G8 and Tra2-beta repressed this exon. We propose that hRBMY associates with regions of the nucleus enriched in nascent RNA and participates in the regulation of specific splicing events in the germline by modulating the activity of constitutively expressed splicing factors.


Asunto(s)
Empalme Alternativo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/metabolismo , Testículo/metabolismo , Animales , Arginina , Células HeLa , Humanos , Masculino , Ratones , Células 3T3 NIH , Proteínas del Tejido Nervioso/química , Proteínas de Transporte Nucleocitoplasmático/química , Unión Proteica , Ingeniería de Proteínas , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/química , Serina , Factores de Empalme Serina-Arginina , Testículo/citología , Activación Transcripcional
10.
Biochem Soc Trans ; 40(4): 784-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22817734

RESUMEN

The splicing regulator protein Tra2ß is conserved between humans and insects and is essential for mouse development. Recent identification of physiological RNA targets has started to uncover molecular targets and mechanisms of action of Tra2ß. At a transcriptome-wide level, Tra2ß protein binds a matrix of AGAA-rich sequences mapping frequently to exons. Particular tissue-specific alternatively spliced exons contain high concentrations of high scoring Tra2ß-binding sites and bind Tra2ß strongly in vitro. These top exons were also activated for splicing inclusion in cellulo by co-expression of Tra2ß protein and were significantly down-regulated after genetic depletion of Tra2ß. Tra2ß itself seems to be fairly evenly expressed across several different mouse tissues. In the present paper, we review the properties of Tra2ß and its regulated target exons, and mechanisms through which this fairly evenly expressed alternative splicing regulator might drive tissue-specific splicing patterns.


Asunto(s)
Empalme Alternativo/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/genética , Animales , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina
11.
Cell Cycle ; 21(3): 219-227, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34927545

RESUMEN

High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a "guardian of the transcriptome" that protects against the use of aberrant (or "cryptic") splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer's disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.


Asunto(s)
Infertilidad Masculina , Enfermedades del Sistema Nervioso , Empalme Alternativo/genética , Femenino , Humanos , Infertilidad Masculina/genética , Masculino , Neuronas , Empalme del ARN
12.
Dev Cell ; 11(1): 125-32, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16824959

RESUMEN

Male gametes originate from a small population of spermatogonial stem cells (SSCs). These cells are believed to divide infinitely and to support spermatogenesis throughout life in the male. Here, we developed a strategy for the establishment of SSC lines from embryonic stem (ES) cells. These cells are able to undergo meiosis, are able to generate haploid male gametes in vitro, and are functional, as shown by fertilization after intracytoplasmic injection into mouse oocytes. Resulting two-cell embryos were transferred into oviducts, and live mice were born. Six of seven animals developed to adult mice. This is a clear indication that male gametes derived in vitro from ES cells by this strategy are able to induce normal fertilization and development. Our approach provides an accessible in vitro model system for studies of mammalian gametogenesis, as well as for the development of new strategies for the generation of transgenic mice and treatment of infertility.


Asunto(s)
Espermatogonias/citología , Células Madre/citología , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , ADN Recombinante/genética , Transferencia de Embrión , Femenino , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Masculino , Meiosis , Ratones , Ratones Transgénicos , Embarazo , Proteínas Recombinantes/genética , Inyecciones de Esperma Intracitoplasmáticas , Espermatogénesis , Espermatogonias/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Proteína Fluorescente Roja
13.
Hum Mol Genet ; 17(18): 2803-18, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18562473

RESUMEN

Human HNRNPGT, encoding the protein hnRNP G-T, is one of several autosomal retrogenes derived from RBMX. It has been suggested that HNRNPGT functionally replaces the sex-linked RBMX and RBMY genes during male meiosis. We show here that during normal mouse germ cell development, hnRNP G-T protein is strongly expressed during and after meiosis when proteins expressed from Rbmx or Rbmx-like genes are absent. Amongst these Rbmx-like genes, DNA sequence analyses indicate that two other mouse autosomal Rbmx-derived retrogenes have evolved recently in rodents and one already shows signs of degenerating into a non-expressed pseudogene. In contrast, orthologues of Hnrnpgt are present in all four major groups of placental mammals. The sequence of Hnrnpgt is under considerable positive selection suggesting it performs an important germ cell function in eutherians. To test this, we inactivated Hnrnpgt in ES cells and studied its function during spermatogenesis in chimaeric mice. Although germ cells heterozygous for this targeted allele could produce sperm, they did not contribute to the next generation. Chimaeric mice with a high level of mutant germ cells were infertile with low sperm counts and a high frequency of degenerate seminiferous tubules and abnormal sperm. Chimaeras made from a 1:1 mix of targeted and wild-type ES cell clones transmitted wild-type germ cells only. Our data show that haploinsufficiency of Hnrnpgt results in abnormal sperm production in the mouse. Genetic defects resulting in reduced levels of HNRNPGT could, therefore, be a cause of male infertility in humans.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Secuencia de Aminoácidos , Animales , Quimera/genética , Quimera/crecimiento & desarrollo , Quimera/metabolismo , Células Madre Embrionarias/metabolismo , Haploidia , Humanos , Masculino , Mamíferos/clasificación , Mamíferos/genética , Mamíferos/metabolismo , Meiosis , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Filogenia , Selección Genética , Alineación de Secuencia , Espermatozoides/crecimiento & desarrollo
14.
Adv Exp Med Biol ; 693: 67-81, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21189686

RESUMEN

Spermatogenesis is one of the few major developmental pathways which are still ongoing in the adult. In this chapter we review the properties of Sam68 and T-STAR, which are the STAR proteins functionally implicated in mammalian spermatogenesis. Sam68 is a ubiquitously expressed member of the STAR family, but has an essential role in spermatogenesis. Sam68 null mice are male infertile and at least in part this is due to a failure in important translational controls that operate during and after meiosis. The homologous T-STAR protein has a much more restricted anatomic expression pattern than Sam68, with highest levels seen in the testis and the developing brain. The focus of this chapter is the functional role of Sam68 and T-STAR proteins in male germ cell development. Since these proteins are known to have many cellular functions we extrapolate from other cell types and tissues to speculate on each of their likely functions within male germ cells, including control of alternative pre-mRNA splicing patterns in male germ cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
15.
Int J Biochem Cell Biol ; 108: 1-6, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593955

RESUMEN

RBMX is a ubiquitously expressed nuclear RNA binding protein that is encoded by a gene on the X chromosome. RBMX belongs to a small protein family with additional members encoded by paralogs on the mammalian Y chromosome and other chromosomes. These RNA binding proteins are important for normal development, and also implicated in cancer and viral infection. At the molecular level RBMX family proteins contribute to splicing control, transcription and genome integrity. Establishing what endogenous genes and pathways are controlled by RBMX and its paralogs will have important implications for understanding chromosome biology, DNA repair and mammalian development. Here we review what is known about this family of RNA binding proteins, and identify important current questions about their functions.


Asunto(s)
Enfermedad , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , ARN Nuclear/genética , Cromosomas Sexuales/genética , Animales , Humanos , Sistema Nervioso/crecimiento & desarrollo , Transcripción Genética
16.
Elife ; 82019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30674417

RESUMEN

Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis. In particular, RBMXL2 represses the selection of aberrant splice sites and the insertion of cryptic and premature terminal exons. Our data suggest a Rbmxl2 retrogene has been conserved across mammals as part of a splicing control mechanism that is fundamentally important to germ cell biology. We propose that this mechanism is essential to meiosis because it buffers the high ambient concentrations of splicing activators, thereby preventing poisoning of key transcripts and disruption to gene expression by aberrant splice site selection.


Asunto(s)
Células Germinativas/metabolismo , Sitios de Empalme de ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Exones/genética , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Masculino , Meiosis/genética , Metafase/genética , Ratones Endogámicos C57BL , Modelos Animales , Especificidad de Órganos , Empalme del ARN/genética , Testículo/metabolismo
17.
Elife ; 82019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31478829

RESUMEN

Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Andrógenos/metabolismo , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN/biosíntesis , Transcripción Genética , Células Cultivadas , Humanos , Masculino , Proteínas de Unión al ARN/genética , Receptores Androgénicos/metabolismo
18.
F1000Res ; 7: 1189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271587

RESUMEN

Background: Androgen steroid hormones are key drivers of prostate cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional changes in prostate cancer cells. Yet to what extent androgens control alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown. Methods: Here we have used RNA-Seq data to globally identify alternative mRNA isoform expression under androgen control in prostate cancer cells, and profiled the expression of these mRNA isoforms in clinical tissue. Results: Our data indicate androgens primarily switch mRNA isoforms through alternative promoter selection. We detected 73 androgen regulated alternative transcription events, including utilisation of 56 androgen-dependent alternative promoters, 13 androgen-regulated alternative splicing events, and selection of 4 androgen-regulated alternative 3' mRNA ends. 64 of these events are novel to this study, and 26 involve previously unannotated isoforms. We validated androgen dependent regulation of 17 alternative isoforms by quantitative PCR in an independent sample set. Some of the identified mRNA isoforms are in genes already implicated in prostate cancer (including LIG4, FDFT1 and RELAXIN), or in genes important in other cancers (e.g. NUP93 and MAT2A). Importantly, analysis of transcriptome data from 497 tumour samples in the TGCA prostate adenocarcinoma (PRAD) cohort identified 13 mRNA isoforms (including TPD52, TACC2 and NDUFV3) that are differentially regulated in localised prostate cancer relative to normal tissue, and 3 ( OSBPL1A, CLK3 and TSC22D3) which change significantly with Gleason grade and  tumour stage. Conclusions: Our findings dramatically increase the number of known androgen regulated isoforms in prostate cancer, and indicate a highly complex response to androgens in prostate cancer cells that could be clinically important.


Asunto(s)
Empalme Alternativo , Andrógenos/fisiología , Neoplasias de la Próstata/genética , ARN Mensajero/genética , Regiones no Traducidas 5' , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/patología , Isoformas de Proteínas/genética , ARN no Traducido/genética
19.
Sci Rep ; 7(1): 5249, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701765

RESUMEN

Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.


Asunto(s)
Andrógenos/farmacología , Biomarcadores de Tumor/metabolismo , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , Tetraspaninas/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Proliferación Celular , Transición Epitelial-Mesenquimal , Estudios de Seguimiento , Humanos , Masculino , Pronóstico , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Tetraspaninas/genética , Células Tumorales Cultivadas
20.
Cell Rep ; 17(12): 3269-3280, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28009295

RESUMEN

The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior.


Asunto(s)
Empalme Alternativo/genética , Red Nerviosa , Células Piramidales/metabolismo , Proteínas de Unión al ARN/genética , Sinapsis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Conducta Animal/fisiología , Proteínas de Unión al Calcio , Homeostasis/genética , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Precursores del ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA