Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Inorg Chem ; 60(19): 14697-14705, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34555280

RESUMEN

[Nb(η6-C6H3Me3)2] reacts with ethylenediamine (en) solutions of K4Ge9 in the presence of 18-crown-6 to give [(η6-C6H3Me3)NbHGe6]2- (1) and [(η6-C6H3Me3)NbGe6Nb(η6-C6H3Me3)]2- (2) as their corresponding [K(18-crown-6)]+ salts. The crystalline solids are dark brown, air-sensitive, and sparingly soluble or insoluble in most solvents. The [K(18-crown-6)]+ salts of cluster ions 1 and 2 have been characterized by energy-dispersive X-ray (EDX) analysis, NMR studies, single-crystal X-ray diffraction, and electrospray ionization time-of-flight (ESI-TOF) mass spectrometry studies. Cluster ions 1 and 2 have markedly different [Ge6] moieties: an electron-deficient carborane-like subunit in 1 and a two-center, two-electron cyclohexane-like subunit in 2.

2.
Chemistry ; 26(26): 5824-5833, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32056301

RESUMEN

The icosahedral [M@Pb12 ]3- (M=Co(1), Rh(2), Ir(3)) cluster ions were prepared from K4 Pb9 and Co(dppe)Cl2 (dppe=1,2-bis(diphenylphosphino)ethane)/[Rh(PPh3 )3 Cl]/[Ir(cod)Cl]2 (cod=1,5-cyclooctadiene), respectively, in the presence of 18-crown-6/ 2,2,2-cryptand in ethylenediamine/toluene solvent mixtures. The [K(2,2,2-cryptand)]+ salt of 1 and the [K(18-crown-6)]+ salt of 3 were characterized via X-ray crystallography; the ions 1 and 3 are isostructural and isoelectronic to the [Rh@Pb12 ]3- (2) ion as well as to the group 10 clusters [M'@Pb12 ]2- (M'=Ni, Pd, Pt). The ions are all 26-electron clusters with near perfect icosahedral Ih point symmetry. Clusters 1-3 show record downfield 207 Pb NMR chemical shifts due to σ-aromaticity of the cluster framework. Calculated and observed 207 Pb NMR chemical shifts and 207 Pb-x M J-couplings (x M=59 Co, 103 Rh, 193 Ir) are in excellent agreement and DFT analysis shows that the variations of 207 Pb NMR chemical shifts for the [M@Pb12 ]2, 3- ions (M=Co, Rh, Ir, Ni, Pd, Pt) are mainly governed by the perpendicularly oriented σ11 component of the chemical shift anisotropy tensor. The laser desorption ionization time-of-flight (LDI-TOF) mass spectra contain the molecular ions as well as several new gas phase clusters derived from the parents. The DFT-minimized structures of these ions are described.

3.
Inorg Chem ; 58(14): 8915-8917, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247833

RESUMEN

Reactions of K12Si17 with the low-valent transition-metal complex Mo(CO)3(C7H8) in ethylenediamine/toluene solutions in the presence of 2,2,2-cryptand yield the {Si(NHCH2CH2NH)3[Mo(CO)3]2}2- dianion, which contains an octahedral Si(NHCH2CH2NH)32- subunit. The SiN6 core comprises a rare example of a doubly deprotonated ethylenediame ligand in a coordination complex and is also the first structurally characterized example of a homoleptic Si(N∩N)3 trischelate. Its structure and spectroscopic properties are described.

4.
Phys Chem Chem Phys ; 22(1): 136-143, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31793940

RESUMEN

Three BaZr0.9Y0.1O3-δ (BZY10) pellets were prepared using different sintering processes, resulting in samples with different grain sizes, from 0.3 to 5 microns. Ambient pressure X-ray photoelectron spectra were recorded in argon, steam and oxygen atmospheres (100 mTorr) in the 300-500 °C temperature range. Deconvolution of O 1s peaks reveals 4 distinct contributions: sub-surface lattice oxide, termination layer oxides, OH- and gas-phase steam in wet environments. The OH- contribution of the O 1s peak includes sub-surface incorporation of protonic defects in the lattice related to hydration as well as surface hydroxylation and molecular water adsorption. The OH- concentration increases with grain size and with decreasing the analysis depth. These results suggest that grain boundaries associated with the larger grains adsorbed water more effectively. Thus, larger grains, which increase proton conductivity in BZY10, may also enhance catalytic activity for carbonaceous fuel oxidation by facilitating increased hydration and surface carbon removal.

5.
Inorg Chem ; 57(14): 8181-8188, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29975049

RESUMEN

The combustion mechanism of [AlCp*]4 (Cp* = pentamethylcyclopentadienyl), a ligated aluminum(I) cluster, was studied by a combination of experimental and theoretical methods. Two complementary experimental methods, temperature-programmed reaction and T-jump time-of-flight mass spectrometry, were used to investigate the decomposition behaviors of [AlCp*]4 in both anaerobic and oxidative environments, revealing AlCp* and Al2OCp* to be the major decomposition products. The observed product distribution and reaction pathways are consistent with the prediction from molecular dynamics simulations and static density functional theory calculations. These studies demonstrated that experiment and theory can indeed serve as complementary and predictive means to study the combustion behaviors of ligated aluminum clusters and may help in engineering stable compounds as candidates for rocket propellants.

6.
J Am Chem Soc ; 139(2): 619-622, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28013538

RESUMEN

K5Sb4 and K3Sb7 Zintl ion precursors react with Pd(PPh3)4 in ethylenediamine/toluene/PBu4+ solutions to give crystals of Sb@Pd12@Sb20n-/PBu4+ salts, where n = 3, 4. The clusters are structurally identical in the two charge states, with nearly perfect Ih point symmetry, and can be viewed as an Sb@Pd12 icosahedron centered inside of an Sb20 dodecahedron. The metric parameters suggest very weak Sb-Sb and Pd-Pd interactions with strong radial Sb-Pd bonds between the Sb20 and Pd12 shells. All-electron DFT analysis shows the 3- ion to be diamagnetic with Ih symmetry and a 1.33 eV HOMO-LUMO gap, whereas the 4- ion undergoes a Jahn-Teller distortion to an S = 1/2 D3d structure with a small 0.1 eV gap. The distortion is predicted to be small and is not discernible by crystallography. Laser desorption-ionization time-of-flight mass spectrometry (LDI-TOF MS) studies of the crystalline samples show intense parent Sb@Pd12@Sb20- ions (negative ion mode) and Sb@Pd12@Sb20+ (positive ion mode) along with series of Sb@Pd12-y@Sb20-x-/+ ions. Ni(cyclooctadiene)2 reacts with K3Sb7 in en/tol/Bu4PBr solvent mixtures to give black precipitates of Sb@Ni12@Sb20n- salts that give similar Sb@Ni12@Sb20-/+ parent ions and Sb@Ni12-y@Sb20-x-/+ degradation series in the respective LDI-TOF MS studies. The solid-state and gas-phase studies of the icosahedral Sb@M12@Sb20n-/n+ ions show that the clusters can exist in the -4, -3, -1, +1 (M = Pd) and +1, -1 (M = Ni) oxidation states. These multiple-charge-state clusters are reminiscent of redox-active fullerenes (e.g., C60n, where n = +1, 0, -1, -2, -3, -4, -5, -6).

7.
Phys Chem Chem Phys ; 19(23): 15541-15548, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28581549

RESUMEN

Several low oxidation state aluminum-containing cluster anions, LAlH- and LAln- (n = 2-4, L = N[Si(Me)3]2), were produced via reactions between aluminum hydride cluster anions, AlxHy-, and hexamethyldisilazane (HMDS). These clusters were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory (DFT) based calculations. Agreement between the experimental and theoretical vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands promise to be a new synthetic scheme for low oxidation state, ligated aluminum clusters.

8.
Anal Chem ; 88(10): 5152-8, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27058399

RESUMEN

Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

9.
Inorg Chem ; 55(9): 4344-53, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27064350

RESUMEN

The neutral homoleptic tris-bpy aluminum complexes Al((R)bpy)3, where R = tBu (1) or Me (2), have been synthesized from reactions between AlX precursors (X = Cl, Br) and neutral (R)bpy ligands through an aluminum disproportion process. The crystalline compounds have been characterized by single-crystal X-ray diffraction, electrochemical experiments, EPR, magnetic susceptibility, and density functional theory (DFT) studies. The collective data show that 1 and 2 contain Al(3+) metal centers coordinated by three bipyridine (bpy(•))(1-) monoanion radicals. Electrochemical studies show that six redox states are accessible from the neutral complexes, three oxidative and three reductive, that involve oxidation or reduction of the coordinated bpy ligands to give neutral (R)bpy or (R)bpy(2-) dianions, respectively. Magnetic susceptibility measurements (4-300 K) coupled with DFT studies show strong antiferromagnetic coupling of the three unpaired electrons located on the (R)bpy ligands to give S = (1)/2 ground states with low lying S = (3)/2 excited states that are populated above 110 K (1) and 80 K (2) in the solid-state. Complex 2 shows weak 3D magnetic interactions at 19 K, which is not observed in 1 or the related [Al(bpy)3] complex.

10.
J Phys Chem A ; 120(12): 1985-91, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26977778

RESUMEN

Dimethyl methylphosphonate (DMMP) is one of the most widely used molecules to simulate chemical warfare agents in adsorption experiments. However, the details of the electronic structure of the isolated molecule have not yet been reported. We have directly probed the occupied valence and core levels using gas phase photoelectron spectroscopy and the unoccupied states using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations were used to study the electronic structure, assign the spectral features, and visualize the molecular orbitals. Comparison with parent molecules shows that valence and core-level binding energies of DMMP follow trends of functional group substitution on the P center. The photoelectron and NEXAFS spectra of the isolated molecule will serve as a reference in studies of DMMP adsorbed on surfaces.

11.
J Chem Phys ; 145(15): 154305, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27782488

RESUMEN

Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

12.
J Chem Phys ; 145(7): 074305, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27544103

RESUMEN

Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH(-), n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm (-), and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

13.
Phys Chem Chem Phys ; 17(39): 26079-83, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26358650

RESUMEN

Group 13 elements are very rarely observed to catenate into linear chains and experimental observation of such species is challenging. Herein we report unique results obtained via combined photoelectron spectroscopy and ab initio studies of the Li2Al3H8(-) cluster that confirm the formation of an Al chain surrounded by hydrogen atoms in a very particular manner. Comprehensive searches for the most stable structure of the Li2Al3H8(-) cluster have shown that the global minimum isomer I possesses a geometric structure, which resembles the structure of propane, similar to the experimentally known Zintl-phase Cs10H[Ga3H8]3 compound featuring the propane-like [Ga3H8](3-) polyanions. Theoretical simulations of the photoelectron spectrum have demonstrated the presence of only one isomer (isomer I) in the molecular beam. Chemical bonding analysis of the Li2Al3H8(-) cluster has revealed two classical Al-Al σ bonds constituting the propane-like kernel.

14.
J Phys Chem A ; 119(45): 11084-93, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26488461

RESUMEN

Additives to hydrocarbon fuels are commonly explored to change the combustion dynamics, chemical distribution, and/or product integrity. Here we employ a novel aluminum-based molecular additive, Al(I) tetrameric cluster [AlBrNEt3]4 (Et = C2H5), to a hydrocarbon fuel and evaluate the resultant single-droplet combustion properties. This Al4 cluster offers a soluble alternative to nanoscale particulate additives that have recently been explored and may mitigate the observed problems of particle aggregation. Results show the [AlBrNEt3]4 additive to increase the burn rate constant of a toluene-diethyl ether fuel mixture by ∼20% in a room temperature oxygen environment with only 39 mM of active aluminum additive (0.16 wt % limited by additive solubility). In comparison, a roughly similar addition of nano-aluminum particulate shows no discernible difference in burn properties of the hydrocarbon fuel. High speed video shows the [AlBrNEt3]4 to induce microexplosive gas release events during the last ∼30% of the droplet combustion time. We attribute this to HBr gas release based on results of temperature-programmed reaction (TPR) experiments of the [AlBrNEt3]4 dosed with O2 and D2O. A possible mechanism of burn rate enhancement is presented that is consistent with microexplosion observations and TPR results.

15.
J Am Chem Soc ; 136(9): 3607-16, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24564371

RESUMEN

In order to characterize the oxidation of metallic surfaces, the reactions of O2 with a number of Al(x)(-) and, for the first time, Ga(x)(-) clusters as molecular models have been investigated, and the results are presented here for x = 9-14. The rate coefficients were determined with FT-ICR mass spectrometry under single-collision conditions at O2 pressures of ~10(-8) mbar. In this way, the qualitatively known differences in the reactivities of the even- and odd-numbered clusters toward O2 could be quantified experimentally. To obtain information about the elementary steps, we additionally performed density functional theory calculations. The results show that for both even- and odd-numbered clusters the formation of the most stable dioxide species, [M(x)O2](-), proceeds via the less stable peroxo species, [M(x)(+)···O2(2-)](-), which contains M-O-O-M moieties. We conclude that the formation of these peroxo intermediates may be a reason for the decreased reactivity of the metal clusters toward O2. This could be one of the main reasons why O2 reactions with metal surfaces proceed more slowly than Cl2 reactions with such surfaces, even though O2 reactions with both Al metal and Al clusters are more exothermic than are reactions of Cl2 with them. Furthermore, our results indicate that the spin-forbidden reactions of (3)O2 with closed-shell clusters and the spin-allowed reactions with open-shell clusters to give singlet [M(x)(+)···O2(2-)](-) are the root cause for the observed even/odd differences in reactivity.

16.
Phys Chem Chem Phys ; 16(23): 11633-9, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24806971

RESUMEN

Through the use of ambient pressure X-ray photoelectron spectroscopy and specially designed ceria-based solid oxide electrochemical cells, carbon dioxide (CO2) electrolysis reactions (CO2 + 2e(-)→ CO + O(2-)) and carbon monoxide (CO) electro-oxidation reactions (CO + O(2-)→ CO2 + 2e(-)) over cerium oxide electrodes have been investigated in the presence of 0.5 Torr CO-CO2 gas mixtures at ∼600 °C. Carbonate species (CO3(2-)) are identified on the ceria surface as reaction intermediates. When CO2 electrolysis is promoted on ceria electrodes at +2.0 V applied bias, we observe a higher concentration of CO3(2-) over a 400 µm-wide active region on the ceria surface, accompanied by Ce(3+)/Ce(4+) redox changes. This increase in the CO3(2-) steady-state concentration suggests that the process of pre-coordination of CO2 to the ceria surface to form a CO3(2-) intermediate (CO2(g) + O(2-)(surface)→ CO3(2-)(surface)) precedes a rate-limiting electron transfer process involving CO3(2-) reduction to give CO and oxide ions (CO3(2-)(surface) + 2Ce(3+)→ CO(g) + 2O(2-)(surface) + 2Ce(4+)). When the applied bias is switched to -1.5 V to promote CO electro-oxidation on ceria, the surface CO3(2-) concentration slightly decreases from the equilibrium value, suggesting that the electron transfer process is also a rate-limiting process in the reverse direction.

17.
J Chem Phys ; 140(12): 124309, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24697443

RESUMEN

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln (-) (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12 (-), did the aluminum moieties exhibit Zintl anion-like characteristics.

18.
J Chem Phys ; 140(5): 054301, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24511934

RESUMEN

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

19.
Proc Natl Acad Sci U S A ; 108(36): 14757-62, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21876183

RESUMEN

A combination of anion photoelectron spectroscopy and density functional theory calculations has elucidated the geometric and electronic structure of gas-phase endohedral Pt/Pb cage cluster anions. The anions, Pt@Pb10⁻¹ and Pt@Pb12¹â» were prepared from "preassembled" clusters generated from crystalline samples of [K(2,2,2-crypt)]2[Pt@Pb12] that were brought into the gas phase using a unique infrared desorption/photoemission anion source. The use of crystalline [K(2,2,2-crypt)]2[Pt@Pb12] also provided access to K[Pt@Pb(n)](-) anions in the gas phase (i.e., the K⁺ salts of the Pt@Pb(n)²â» anions). Anion photoelectron spectra of Pt@Pb10⁻¹, Pt@Pb12¹â», and K[Pt@Pb12]¹â» are presented. Extensive density functional theory calculations on Pt@Pb10³â»/²â»/¹â»/° and Pt@Pb12²â»/¹â» provided candidate structures and anion photoelectron spectra for Pt@Pb10⁻¹ and Pt@Pb12¹â». Together, the calculated and measured photoelectron spectra show that Pt@Pb10⁻¹ and Pt@Pb12²â»/¹â» endohedral complexes maintain their respective D(4d) and slightly distorted I(h) symmetries in the gas phase even for the charge states with open shell character. Aside from the fullerenes, the Pt@Pb12²â» endohedral complex is the only bare cluster that has been structurally characterized in the solid state, solution, and the gas phase.

20.
J Am Chem Soc ; 135(31): 11572-9, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23822749

RESUMEN

Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA