Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979009

RESUMEN

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Asunto(s)
Autofagia , Hepatocitos/parasitología , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitología , Esporozoítos/metabolismo , Vacuolas/parasitología , Animales , Línea Celular , Femenino , Células HeLa , Interacciones Huésped-Parásitos , Humanos , Malaria/parasitología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Organismos Modificados Genéticamente
2.
Cell Microbiol ; 19(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28573684

RESUMEN

Eukaryotic cells can employ autophagy to defend themselves against invading pathogens. Upon infection by Plasmodium berghei sporozoites, the host hepatocyte targets the invader by labelling the parasitophorous vacuole membrane (PVM) with the autophagy marker protein LC3. Until now, it has not been clear whether LC3 recruitment to the PVM is mediated by fusion of autophagosomes or by direct incorporation. To distinguish between these possibilities, we knocked out genes that are essential for autophagosome formation and for direct LC3 incorporation into membranes. The CRISPR/Cas9 system was employed to generate host cell lines deficient for either FIP200, a member of the initiation complex for autophagosome formation, or ATG5, responsible for LC3 lipidation and incorporation of LC3 into membranes. Infection of these knockout cell lines with P. berghei sporozoites revealed that LC3 recruitment to the PVM indeed depends on functional ATG5 and the elongation machinery, but not on FIP200 and the initiation complex, suggesting a direct incorporation of LC3 into the PVM. Importantly, in P. berghei-infected ATG5-/- host cells, lysosomes still accumulated at the PVM, indicating that the recruitment of lysosomes follows an LC3-independent pathway.


Asunto(s)
Hígado/fisiopatología , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidad , Vacuolas/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Sistemas CRISPR-Cas/fisiología , Lisosomas/metabolismo , Transducción de Señal/fisiología , Esporozoítos/metabolismo
3.
Antimicrob Agents Chemother ; 54(3): 1334-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20028821

RESUMEN

The stage-specific antimalarial activities of a panel of antiretroviral protease inhibitors (PIs), including two nonpeptidic PIs (tipranavir and darunavir), were tested in vitro against Plasmodium falciparum. While darunavir demonstrated limited antimalarial activity (effective concentration [EC(50)], >50 microM), tipranavir was active at clinically relevant concentrations (EC(50), 12 to 21 microM). Saquinavir, lopinavir, and tipranavir preferentially inhibited the growth of mature asexual-stage parasites (24 h postinvasion). While all of the PIs tested inhibited gametocytogenesis, tipranavir was the only one to exhibit gametocytocidal activity.


Asunto(s)
Antimaláricos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Darunavir , Eritrocitos/parasitología , Humanos , Estadios del Ciclo de Vida , Pruebas de Sensibilidad Parasitaria , Piridinas/farmacología , Pironas/farmacología , Sulfonamidas/farmacología
4.
J Virol ; 83(22): 11528-39, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19726522

RESUMEN

Nef, an important pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), elevates virus replication in vivo. Among other activities, Nef affects T-cell receptor (TCR) signaling via several mechanisms. For HIV-1 Nef these include alteration of the organization and function of the immunological synapse (IS) such as relocalization of the Lck kinase, as well as early inhibition of TCR/CD3 complex (TCR-CD3)-mediated actin rearrangements and tyrosine phosphorylation. Although most SIV and HIV-2 Nef alleles (group 2) potently downregulate cell surface TCR-CD3, this activity was lost in the viral lineage that gave rise to HIV-1 and its SIV counterparts (group 1). To address the contribution of TCR-CD3 downregulation to Nef effects on TCR signal initiation, we compared the activities of 18 group 1 and group 2 Nef proteins, as well as SIV Nef mutants with defects in TCR-CD3 downmodulation. We found that alteration of Lck's subcellular localization is largely conserved and occurs independently of actin remodeling inhibition or TCR-CD3 downregulation. Surprisingly, Nef proteins of both groups also strongly reduced TCR-induced actin remodeling and tyrosine phosphorylation on TCR-stimulatory surfaces and TCR-CD3 downmodulation competence by group 2 Nef proteins only slightly elevated these effects. Furthermore, Nef proteins from HIV-1 and SIV reduced conjugation between infected primary human T lymphocytes and Raji B cells and potently prevented F-actin polarization at the IS independently of their ability to downmodulate TCR-CD3. These results establish alterations of early TCR signaling events at the IS, including F-actin remodeling and relocalization of Lck, as evolutionary conserved activities of highly divergent lentiviral Nef proteins.


Asunto(s)
Actinas/fisiología , VIH-1/fisiología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Secuencia Conservada , Regulación hacia Abajo , Humanos , Células Jurkat , Complejo Receptor-CD3 del Antígeno de Linfocito T/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología
5.
Sci Rep ; 7(1): 2191, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526861

RESUMEN

The hepatic stage of the malaria parasite Plasmodium is accompanied by an autophagy-mediated host response directly targeting the parasitophorous vacuolar membrane (PVM) harbouring the parasite. Removal of the PVM-associated autophagic proteins such as ubiquitin, p62, and LC3 correlates with parasite survival. Yet, it is unclear how Plasmodium avoids the deleterious effects of selective autophagy. Here we show that parasites trap host autophagic factors in the tubovesicular network (TVN), an expansion of the PVM into the host cytoplasm. In proliferating parasites, PVM-associated LC3 becomes immediately redirected into the TVN, where it accumulates distally from the parasite's replicative centre. Finally, the host factors are shed as vesicles into the host cytoplasm. This strategy may enable the parasite to balance the benefits of the enhanced host catabolic activity with the risk of being eliminated by the cell's cytosolic immune defence.


Asunto(s)
Autofagia , Interacciones Huésped-Parásitos , Malaria/metabolismo , Malaria/parasitología , Plasmodium berghei/fisiología , Vacuolas/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Genes Reporteros , Humanos , Hígado/metabolismo , Hígado/parasitología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Transporte de Proteínas , Imagen de Lapso de Tiempo
6.
Autophagy ; 11(9): 1561-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26208778

RESUMEN

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.


Asunto(s)
Citosol/inmunología , Hepatocitos/inmunología , Imagenología Tridimensional , Evasión Inmune , Inmunidad , Malaria/inmunología , Parásitos/inmunología , Plasmodium berghei/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Biomarcadores/metabolismo , Galectinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Hepatocitos/parasitología , Hepatocitos/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Estadios del Ciclo de Vida , Hígado/parasitología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Malaria/parasitología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Parásitos/crecimiento & desarrollo , Parásitos/patogenicidad , Parásitos/ultraestructura , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/ultraestructura , Proteína Sequestosoma-1 , Esporozoítos/fisiología , Esporozoítos/ultraestructura , Análisis de Supervivencia , Factores de Tiempo , Ubiquitina/metabolismo , Ubiquitinación , Vacuolas/metabolismo , Vacuolas/ultraestructura , Virulencia
7.
Autophagy ; 9(4): 568-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388496

RESUMEN

Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology.


Asunto(s)
Autofagia , Estadios del Ciclo de Vida , Hígado/parasitología , Parásitos/citología , Parásitos/crecimiento & desarrollo , Plasmodium berghei/citología , Plasmodium berghei/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Bases de Datos de Proteínas , Evolución Molecular , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Ratones , Datos de Secuencia Molecular , Parásitos/ultraestructura , Fagosomas/metabolismo , Fagosomas/ultraestructura , Plasmodium berghei/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/metabolismo , Esquizontes/citología , Esquizontes/metabolismo , Esquizontes/ultraestructura , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA