Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542958

RESUMEN

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Asunto(s)
PPAR gamma , Neoplasias de la Vejiga Urinaria , Humanos , PPAR gamma/agonistas , Agonismo Inverso de Drogas , Agonistas de PPAR-gamma , Regulación de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 116(7): 2551-2560, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683722

RESUMEN

Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C-SOS1, SOS1, and SOS2. By preventing formation of the KRAS-SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS-SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteína SOS1/antagonistas & inhibidores , Línea Celular , Cristalografía por Rayos X , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/química , Proteína SOS1/metabolismo , Transducción de Señal
3.
Cell Chem Biol ; 31(7): 1247-1263.e16, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38537632

RESUMEN

This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antineoplásicos , Proliferación Celular , Ensayos Analíticos de Alto Rendimiento , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Proteínas Señalizadoras YAP/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Línea Celular Tumoral , Fosfoproteínas/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Descubrimiento de Drogas , Ratones Desnudos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Fenotipo , Relación Estructura-Actividad , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
4.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36270630

RESUMEN

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Asunto(s)
PPAR gamma , PPAR gamma/metabolismo , Ligandos
5.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34428039

RESUMEN

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Proteína Quinasa Activada por ADN/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Estructura Molecular , Fosfatidilinositol 3-Quinasas/genética , Ratas , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Mol Biol Cell ; 18(10): 4024-36, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17671160

RESUMEN

Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.


Asunto(s)
Compuestos de Anilina/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Mitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Tiazolidinas/farmacología , Anafase/efectos de los fármacos , Compuestos de Anilina/química , Animales , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Centrosoma/enzimología , Cromátides/efectos de los fármacos , Cromátides/enzimología , Citocinesis/efectos de los fármacos , ADN Helicasas , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Índice Mitótico , Inhibidores de Proteínas Quinasas/química , Huso Acromático/efectos de los fármacos , Huso Acromático/enzimología , Tiazolidinas/química , Quinasa Tipo Polo 1
7.
ChemMedChem ; 15(10): 827-832, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32237114

RESUMEN

Due to its frequent mutations in multiple lethal cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of attention in oncology research. We report here a computationally driven approach aimed at identifying novel and selective KRASG12C covalent inhibitors. The workflow involved initial enumeration of virtual molecules tailored for the KRAS allosteric binding site. Tools such as pharmacophore modeling, docking, and free-energy perturbations were deployed to prioritize the compounds with the best profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit KRASG12C . Analogues were prepared to establish structure-activity relationships, while molecular dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an unprecedented binding mode.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Relación Estructura-Actividad
8.
iScience ; 23(9): 101517, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32927263

RESUMEN

Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.

9.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502336

RESUMEN

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Morfolinas/administración & dosificación , Morfolinas/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Administración Oral , Animales , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Disponibilidad Biológica , Carboplatino/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores del Citocromo P-450 CYP2C8/química , Inhibidores del Citocromo P-450 CYP2C8/farmacología , Reparación del ADN/efectos de los fármacos , Perros , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Femenino , Humanos , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Morfolinas/química , Pirazoles/química , Ratas Wistar , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Med Chem ; 62(2): 928-940, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30563338

RESUMEN

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Pirimidinas/química , Apoptosis/efectos de los fármacos , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Piridinas/metabolismo , Piridinas/farmacología , Pirimidinas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
12.
Cancer Lett ; 390: 21-29, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043914

RESUMEN

The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Oncogenes/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridazinas/farmacología , Animales , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/química
13.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28961375

RESUMEN

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/uso terapéutico , Triazinas/uso terapéutico , Animales , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Quinasa 9 Dependiente de la Ciclina/metabolismo , Semivida , Células HeLa , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Desnudos , Conformación Molecular , Simulación del Acoplamiento Molecular , Neoplasias/patología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/toxicidad , Estructura Terciaria de Proteína , Ratas , Ratas Desnudas , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/toxicidad , Trasplante Heterólogo , Triazinas/química , Triazinas/toxicidad
14.
Drug Discov Today ; 11(11-12): 561-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16713909

RESUMEN

With the advent of high throughput technologies in biological screening in the 1980s, providing sufficient numbers of small molecules for screening became a bottleneck in the drug discovery process. Combinatorial chemistry was the first attempt by chemists to address this issue. However, since its first applications, combinatorial chemistry has evolved rapidly into diverse fields. This review will focus on the evolution and the current status of what we refer to today as automated medicinal chemistry.


Asunto(s)
Técnicas Químicas Combinatorias , Diseño de Fármacos , Preparaciones Farmacéuticas , Técnicas Químicas Combinatorias/instrumentación , Técnicas Químicas Combinatorias/métodos , Técnicas Químicas Combinatorias/tendencias , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA