Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Sci Technol ; 71(10): 1536-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442496

RESUMEN

Constructed wetland ecotechnologies (CWEs) are a promising solution to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand media amended with woody biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing biological oxygen demand (BOD5), suspended solids and coliforms. The experimental design consisted of 21 vertical flow (VF) mesocosms. There were seven media treatments using sand amended with varying proportions of biochar. During the first 8 months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage. The influent had a 4-day hydraulic retention time. Samples were monitored for BOD5, total suspended solids (TSS), total volatile solids (TVS), total coliforms and faecal coliforms. In the first 8 months, there were no significant performance differences between media treatments in the outflow concentrations of BOD5, TSS and TVS. The significant differences occurred during the last 3 months; using septage with biochar additions performed better than pure sand. For coliforms, the significant differences occurred after 6 months. In conclusion, the addition of biochar was not effective for SCW. The VF mesocosms system proved to be more effective in removing BOD5, TSS, TVS and coliforms when septage was loaded into the media.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Eliminación de Residuos Líquidos/métodos , Adsorción , Cymbopogon/metabolismo , Restauración y Remediación Ambiental/instrumentación , Melaleuca/metabolismo , Aguas Residuales/química , Humedales
2.
Chemosphere ; 339: 139674, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517668

RESUMEN

This comprehensive study analysed 55 articles published between 2011 and 2022 on the use of metal organic frameworks (MOFs) for phosphate adsorption. The study found that the performance of MOFs in phosphate adsorption is influenced by various factors such as the type of MOF, synthesis method, modification/alteration, and operational conditions (initial concentration, adsorbent dose, pH, contact time, and temperature). Most of the MOFs have a wide range of theoretical maximum adsorption capacity for phosphate, but their long-term use in phosphorus recovery may be limited due to the adsorption mechanisms being dominated by inner sphere complexation. The study employed machine learning to construct artificial neural network (ANN) models for predicting phosphate adsorption capacity based on input features from operation and synthesis procedures. The initial phosphate concentration was the most important input from the operational features, while the modulator agent was consistently relevant during MOF synthesis. The models showed strong fitting for most MOF types recorded for the study, such as UIO-66, MIL-100, ZIF-8, Al-MOFs, La-MOFs, and Ce-MOFs. Overall, this study provides valuable insights for the design of MOF adsorbents for phosphate adsorption and offers guidance for future research in this area.


Asunto(s)
Estructuras Metalorgánicas , Fosfatos , Adsorción , Fósforo , Redes Neurales de la Computación
3.
Sci Total Environ ; 569-570: 123-133, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27341113

RESUMEN

To improve the performance efficiency of subsurface constructed wetlands (CWs), a variety of media have been tested. Recently, there has been a rising interest in biochar. This research aims to develop the effectiveness of sand media amended with biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing phosphorus from sewage effluent in CWs. The experimental design consisted of vertical flow (VF) mesocosms with seven media treatments based on the proportions of biochar in the sand media which ranged from 0 to 25% by volume. During the first 8months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage was used for the remaining 8months. Inflow and outflow were monitored for total phosphorus (TP) and PO4-P. Plants were harvested at the end of the experiment and TP biomass was determined. Removal efficiencies of TP in the mesocosms loaded with SCW and septage ranged from 42 to 91% and 30 to 83%, respectively. Removal efficiencies of PO4-P ranged from 43 to -92% and 35 to 85% for SCW and septage, respectively. The results revealed that the sand media performed better than the biochar-amended media; increasing the proportion of biochar in the media decreased removal efficiency of phosphorus. However, after flushing due to major rain event, there was no significant difference between sand and sand augmented with 20% biochar. Total plant P ranged from 1.75g in the 20% biochar mesocosm to 2.10g in the sand only mesocosm. Plant uptake of P, at least in part, may be accredited for the better P removal efficiency in the sand media compared to the biochar-amended media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA