Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Genet Metab ; 134(1-2): 195-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34412939

RESUMEN

Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.


Asunto(s)
Proteínas Portadoras/genética , Epilepsia/genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Niño , Femenino , Edición Génica , Humanos , Patología Molecular , Canales de Potasio/metabolismo
2.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37497182

RESUMEN

A core tenet of synthetic biology is that well-characterized regulatory elements are essential for engineering biological systems. Here, we characterize the specificity and expression levels of 18 short (254 to 880 bp) candidate germline promoters using a single-copy gfp reporter assay in C. elegans . Six promoters resulted in ubiquitous expression, three did not drive detectable expression, and nine were germline-specific. Several promoters drove stronger germline expression than the commonly-used mex-5 promoter. The promoters range across expression levels and facilitate, for example, low expression of toxic transgenes or high expression of gene editing enzymes, and their compactness facilitates gene synthesis.

3.
Methods Mol Biol ; 2468: 239-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320568

RESUMEN

Transgenesis in model organisms is an essential tool for determining the function of protein-coding genes and non-coding regulatory regions. In Caenorhabditis elegans, injected DNA can be propagated as multicopy extra-chromosomal arrays, but transgenes in arrays are frequently mosaic, over-expressed in some tissues, and silenced in the germline. Here, we describe methods to insert single-copy transgenes into specific genomic locations (MosSCI) or random locations (miniMos) using Mos1 transposons. Single-copy insertions allow expression at endogenous levels, expression in the germline, and identification of active and repressed regions of the genome.


Asunto(s)
Caenorhabditis elegans , Células Germinativas , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Técnicas de Transferencia de Gen , Transgenes
4.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35900171

RESUMEN

Efficient and reproducible transgenesis facilitates and accelerates research using genetic model organisms. Here, we describe a modular safe-harbor transgene insertion (MosTI) for use in Caenorhabditis elegans which improves targeted insertion of single-copy transgenes by homology directed repair and targeted integration of extrachromosomal arrays by nonhomologous end-joining. MosTI allows easy conversion between selection markers at insertion site and a collection of universal targeting vectors with commonly used promoters and fluorophores. Insertions are targeted at three permissive safe-harbor intergenic locations and transgenes are reproducibly expressed in somatic and germ cells. Chromosomal integration is mediated by CRISPR/Cas9, and positive selection is based on a set of split markers (unc-119, hygroR, and gfp) where only animals with chromosomal insertions are rescued, resistant to antibiotics, or fluorescent, respectively. Single-copy insertion is efficient using either constitutive or heat-shock inducible Cas9 expression (25-75%) and insertions can be generated from a multiplexed injection mix. Extrachromosomal array integration is also efficient (7-44%) at modular safe-harbor transgene insertion landing sites or at the endogenous unc-119 locus. We use short-read sequencing to estimate the plasmid copy numbers for 8 integrated arrays (6-37 copies) and long-read Nanopore sequencing to determine the structure and size (5.4 Mb) of 1 array. Using universal targeting vectors, standardized insertion strains, and optimized protocols, it is possible to construct complex transgenic strains which should facilitate the study of increasingly complex biological problems in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromosomas , Técnicas de Transferencia de Gen , Proteínas del Tejido Nervioso/genética , Transgenes
5.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536214

RESUMEN

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.

6.
Nat Commun ; 11(1): 6300, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298957

RESUMEN

Transgenes are prone to progressive silencing due to their structure, copy number, and genomic location. In C. elegans, repressive mechanisms are particularly strong in the germline with almost fully penetrant transgene silencing in simple extrachromosomal arrays and frequent silencing of single-copy transgene insertions. A class of non-coding DNA, Periodic An/Tn Clusters (PATCs) can prevent transgene-silencing in repressive chromatin or from small interfering RNAs (piRNAs). Here, we describe design rules (codon-optimization, intron and PATC inclusion, elevated temperature (25 °C), and vector backbone removal) for efficient germline expression from arrays in wildtype animals. We generate web-based tools to analyze PATCs and reagents for the convenient assembly of PATC-rich transgenes. An extensive collection of silencing resistant fluorescent proteins (e.g., gfp, mCherry, and tagBFP) can be used for dissecting germline regulatory elements and a set of enhanced enzymes (Mos1 transposase, Cas9, Cre, and Flp recombinases) enable efficient genetic engineering in C. elegans.


Asunto(s)
Silenciador del Gen , Ingeniería Genética/métodos , Intrones/genética , Animales , Animales Modificados Genéticamente/genética , Proteína 9 Asociada a CRISPR/genética , Caenorhabditis elegans/genética , Codón/genética , Proteínas de Unión al ADN/genética , Genes Reporteros/genética , Vectores Genéticos/genética , Células Germinativas , Proteínas Luminiscentes/genética , Transgenes/genética , Transposasas/genética
7.
Nat Commun ; 10(1): 787, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770809

RESUMEN

Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels.


Asunto(s)
Potenciales de la Membrana/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila , Evolución Molecular , Humanos , Invertebrados , Potenciales de la Membrana/genética , Mutación/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Vertebrados
8.
G3 (Bethesda) ; 7(5): 1429-1437, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28280211

RESUMEN

CRISPR/Cas9 genome engineering strategies allow the directed modification of the Caenorhabditis elegans genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted. Second, the detection of animals carrying genome edits can be challenging in the absence of clearly visible or selectable phenotypes. Third, the sgRNA target site must be inactivated after editing to avoid further double-strand break events. We describe here a strategy that addresses these complications by transplanting the protospacer of a highly efficient sgRNA into a gene of interest to render it amenable to genome engineering. This sgRNA targeting the dpy-10 gene generates genome edits at comparatively high frequency. We demonstrate that the transplanted protospacer is cleaved at the same time as the dpy-10 gene. Our strategy generates scarless genome edits because it no longer requires the introduction of mutations in endogenous sgRNA target sites. Modified progeny can be easily identified in the F1 generation, which drastically reduces the number of animals to be tested by PCR or phenotypic analysis. Using this strategy, we reliably generated precise deletion mutants, transcriptional reporters, and translational fusions with epitope tags and fluorescent reporter genes. In particular, we report here the first use of the new red fluorescent protein mScarlet in a multicellular organism. wrmScarlet, a C. elegans-optimized version, dramatically surpassed TagRFP-T by showing an eightfold increase in fluorescence in a direct comparison.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Marcación de Gen/métodos , Fenotipo , ARN Guía de Kinetoplastida/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Genoma de los Helmintos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA