Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 195, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888066

RESUMEN

BACKGROUND: The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). RESULTS: Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. CONCLUSIONS: The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


Asunto(s)
Bradyrhizobium/química , Sequías , Fertilizantes/análisis , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Micorrizas/química , Glycine max/química , Estrés Fisiológico
2.
Physiol Plant ; 172(4): 2153-2169, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33964177

RESUMEN

The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and ß-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation.


Asunto(s)
Bacillus amyloliquefaciens , Micorrizas , Sequías , Raíces de Plantas , Semillas , Glycine max
3.
Microorganisms ; 12(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930505

RESUMEN

Considering current global climate change, drought stress is regarded as a major problem negatively impacting the growth of soybeans, particularly at the critical stages R3 (early pod) and R5 (seed development). Microbial inoculation is regarded as an ecologically friendly and low-cost-effective strategy for helping soybean plants withstand drought stress. The present study aimed to isolate newly drought-tolerant bacteria from native soil and evaluated their potential for producing growth-promoting substances as well as understanding how these isolated bacteria along with arbuscular mycorrhizal fungi (AMF) could mitigate drought stress in soybean plants at critical growth stages in a field experiment. In this study, 30 Bradyrhizobium isolates and 30 rhizobacterial isolates were isolated from the soybean nodules and rhizosphere, respectively. Polyethylene glycol (PEG) 6000 was used for evaluating their tolerance to drought, and then the production of growth promotion substances was evaluated under both without/with PEG. The most effective isolates (DTB4 and DTR30) were identified genetically using 16S rRNA gene. A field experiment was conducted to study the impact of inoculation with DTB4 and DTR30 along with AMF (Glomus clarum, Funneliformis mosseae, and Gigaspora margarita) on the growth and yield of drought-stressed soybeans. Our results showed that the bioinoculant applications improved the growth traits (shoot length, root length, leaf area, and dry weight), chlorophyll content, nutrient content (N, P, and K), nodulation, and yield components (pods number, seeds weight, and grain yield) of soybean plants under drought stress (p ≤ 0.05). Moreover, proline contents were decreased due to the bioinoculant applications under drought when compared to uninoculated treatments. As well as the count of bacteria, mycorrhizal colonization indices, and the activity of soil enzymes (dehydrogenase and phosphatase) were enhanced in the soybean rhizosphere under drought stress. This study's findings imply that using a mixture of bioinoculants may help soybean plants withstand drought stress, particularly during critical growth stages, and that soybean growth, productivity, and soil microbial activity were improved under drought stress.

4.
Biology (Basel) ; 13(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39194491

RESUMEN

Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., ß-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.

5.
Microbiol Res ; 266: 127254, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36371871

RESUMEN

The mechanisms underlie increased stress tolerance in plants of salinity stress in plants by arbuscular mycorrhizal fungi (AMF) are poorly understood, particularly the role of polyamine metabolism. The current study was conducted to investigate how inoculation with the AMF, Funneliformis constrictum, affects maize plant tolerance to salt stress. To this end, we investigated the changes in photosynthesis, redox status, primary metabolites (amino acids) and secondary metabolism (phenolic and polyamine metabolism). Control and inoculated maize plants were grown using different concentrations of diluted seawater (0%, 10%, 20% and 40%). Results revealed that treatment with 10% seawater had a beneficial effect on AMF and its host growth. However, irrigation with 20% and 40% significantly reduced plant growth and biomass. As seawater concentration increased, the plants' reliance on mycorrhizal fungi increased resulting in enhanced growth and photosynthetic pigments contents. Under higher seawater concentrations, inoculation with AMF reduced salinity induced oxidative stress and supported redox homeostasis by reducing H2O2 and MDA levels as well as increasing antioxidant-related enzymes activities (e.g., CAT, SOD, APX, GPX, POX, GR, and GSH). AMF inoculation increased amino acid contents in shoots and roots under control and stress conditions. Amino acids availability provides a route for polyamines biosynthesis, where AMF increased polyamines contents (Put, Spd, Spm, total Pas) and their metabolic enzymes associated (ADC, SAMDC, Spd synthase, and Spm synthase), particularly under 40% seawater irrigation. Consistently, the transcription of genes, involved in polyamine metabolism was also up regulated in salinity-stressed plants. AMF further increased the expression in genes involved in polyamine biosynthesis (ODC, SAMDC, SPDS2 and decreased expression of those in catabolic biosynthesis (ADC and PAO). Overall, inoculation with Funneliformis constrictum could be adopted as a practical strategy to alleviate salinity stress.


Asunto(s)
Micorrizas , Zea mays , Zea mays/microbiología , Salinidad , Peróxido de Hidrógeno/metabolismo , Micorrizas/metabolismo , Poliaminas/metabolismo , Aminoácidos/metabolismo
6.
Food Res Int ; 172: 113122, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689887

RESUMEN

Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.


Asunto(s)
Cyamopsis , Micorrizas , Fertilizantes , Antocianinas , Semillas , Hojas de la Planta , Poliaminas , Azúcares
7.
Environ Pollut ; 315: 120356, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36220578

RESUMEN

Heavy metals such as beryllium (Be) have been identified as toxic for plants with a negative impact on plant growth. Therefore, there is an urgent need for environmentally friendly techniques to reduce Be toxicity on plant growth and productivity. To this end, arbuscular mycorrhizal fungi (AMF) are widely applied to induce plant growth and stress tolerance. However, how AMF-plant symbiosis can support plants under Be stress has not been studied. Accordingly, we investigated the physiological and biochemical responses of AMF inoculated ryegrass and chickpea plants to Be stress. The associated changes in Be uptake and accumulation, photosynthesis, oxidative stress, carbon and nitrogen metabolism were studied. Soil contamination with Be induced higher Be accumulation, particularly in ryegrass, which consequentially reduced plant growth and photosynthesis. However, photorespiration and oxidative damage (H2O2 accumulation, lipid oxidation, and LOX activity) were increased, mainly in ryegrass. In both plant species, AMF inoculation reduced Be accumulation and mitigated growth inhibition and oxidative damage, but to a more extent in ryegrass. This could be explained by improved photosynthesis as well as the upregulation of osmoprotectants i.e., sucrose and proline biosynthesis pathways. The increase in proline level was consistent with higher nitrogen (N) metabolism as reflected by N level and nitrate reductase. Species-specific responses were recorded and supported by principal component analysis. This study provided insight into the mechanism of AMF's impact on Be-stressed ryegrass and chickpea plants. Hence, the current research suggested that AMF inoculation could be used as a viable strategy to mitigate Be phytotoxicity in ryegrass and chickpea plants.


Asunto(s)
Cicer , Lolium , Micorrizas , Micorrizas/metabolismo , Lolium/metabolismo , Berilio/metabolismo , Peróxido de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Prolina/metabolismo
8.
Chemosphere ; 296: 134044, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35202662

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are beneficial for the plant growth under heavy metal stress. Such beneficial effect is improved by elevated CO2 (eCO2). However, the mechanisms by which eCO2 improves AMF symbiotic associations under arsenite (AsIII) toxicity are hardly studied. Herein, we compared these regulatory mechanisms in species from two agronomical important plant families - grasses (wheat) and legumes (soybean). AsIII decreased plant growth (i.e., 53.75 and 60.29% of wheat and soybean, respectively) and photosynthesis. It also increased photorespiration and oxidative injury in both species, but soybean was more sensitive to oxidative stress as indicated by higher H2O2 accumulation and oxidation of protein and lipid. eCO2 significantly improved AMF colonization by increasing auxin levels, which induced high carotenoid cleavage dioxygenase (CCDs) activity, particularly in soybean roots. The improved sugar metabolism in plant shoots by co-application of eCO2 and AsIII allocated more sugars to roots sequentially. Sugar accumulation in plant roots is further induced by AMF, resulting in more C skeletons to produce organic acids, which are effectively exudated into the soil to reduce AsIII uptake. Exposure to eCO2 reduced oxidative damage and this mitigation was stronger in soybean. This could be attributed to a greater reduction in photorespiration as well as a stronger antioxidant and detoxification defence systems. The grass/legume-specificity was supported by principal component analysis, which revealed that soybean was more affected by AsIII stress and more responsive to AMF and eCO2. This study provided a mechanistic understanding of the impact of AMF, eCO2 and their interaction on As-stressed grass and legume plants, allowing better practical strategies to mitigate AsIII phytotoxicity.


Asunto(s)
Micorrizas , Arsenitos , Dióxido de Carbono/farmacología , Peróxido de Hidrógeno/farmacología , Raíces de Plantas , Plantas , Poaceae , Glycine max , Azúcares , Triticum
9.
J Fungi (Basel) ; 7(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209315

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can promote plant growth and induce stress tolerance. Proline is reported to accumulate in mycorrhizal plants under stressful conditions, such as aluminum (Al) stress. However, the detailed changes induced in proline metabolism under AMF-plant symbiosis has not been studied. Accordingly, this work aimed to study how Al-stressed grass (barley) and legume (lotus) species respond to AMF inoculation at growth and biochemical levels. The associated changes in Al uptake and accumulation, the rate of photosynthesis, and the key enzymes and metabolites involved in proline biosynthesis and degradation pathways were studied. Soil contamination with Al induced Al accumulation in tissues of both species and, consequently, reduced plant growth and the rate of photosynthesis, while more tolerance was noticed in lotus. Inoculation with AMF significantly reduced Al accumulation and mitigated the negative impacts of Al on growth and photosynthesis in both species; however, these positive effects were more pronounced in barley plants. The mitigating action of AMF was associated with upregulation of proline biosynthesis through glutamate and ornithine pathways, more in lotus than in barley, and repression of its catabolism. The increased proline level in lotus was consistent with improved N metabolism (N level and nitrate reductase). Overall, this study suggests the role of AMF in mitigating Al stress, where regulation of proline metabolism is a worthy mechanism underlying this mitigating action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA