Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031746

RESUMEN

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Asunto(s)
Biopolímeros/metabolismo , Mucinas/metabolismo , Factor de von Willebrand/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Disulfuros/metabolismo , Femenino , Glicosilación , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestructura , Péptidos/química , Dominios Proteicos , Multimerización de Proteína , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
2.
Nature ; 603(7899): 174-179, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35173332

RESUMEN

Lassa virus (LASV) is a human pathogen, causing substantial morbidity and mortality1,2. Similar to other Arenaviridae, it presents a class-I spike complex on its surface that facilitates cell entry. The virus's cellular receptor is matriglycan, a linear carbohydrate that is present on α-dystroglycan3,4, but the molecular mechanism that LASV uses to recognize this glycan is unknown. In addition, LASV and other arenaviruses have a unique signal peptide that forms an integral and functionally important part of the mature spike5-8; yet the structure, function and topology of the signal peptide in the membrane remain uncertain9-11. Here we solve the structure of a complete native LASV spike complex, finding that the signal peptide crosses the membrane once and that its amino terminus is located in the extracellular region. Together with a double-sided domain-switching mechanism, the signal peptide helps to stabilize the spike complex in its native conformation. This structure reveals that the LASV spike complex is preloaded with matriglycan, suggesting the mechanism of binding and rationalizing receptor recognition by α-dystroglycan-tropic arenaviruses. This discovery further informs us about the mechanism of viral egress and may facilitate the rational design of novel therapeutics that exploit this binding site.


Asunto(s)
Distroglicanos , Virus Lassa , Receptores Virales , Proteínas del Envoltorio Viral , Distroglicanos/química , Distroglicanos/metabolismo , Humanos , Fiebre de Lassa/virología , Virus Lassa/química , Virus Lassa/metabolismo , Conformación Proteica , Señales de Clasificación de Proteína , Receptores Virales/química , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
3.
Nat Chem Biol ; 18(2): 161-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931064

RESUMEN

Multi-enzyme assemblies composed of metabolic enzymes catalyzing sequential reactions are being increasingly studied. Here, we report the discovery of a 1.6 megadalton multi-enzyme complex from Bacillus subtilis composed of two enzymes catalyzing opposite ('counter-enzymes') rather than sequential reactions: glutamate synthase (GltAB) and glutamate dehydrogenase (GudB), which make and break glutamate, respectively. In vivo and in vitro studies show that the primary role of complex formation is to inhibit the activity of GudB. Using cryo-electron microscopy, we elucidated the structure of the complex and the molecular basis of inhibition of GudB by GltAB. The complex exhibits unusual oscillatory progress curves and is necessary for both planktonic growth, in glutamate-limiting conditions, and for biofilm growth, in glutamate-rich media. The regulation of a key metabolic enzyme by complexing with its counter enzyme may thus enable cell growth under fluctuating glutamate concentrations.


Asunto(s)
Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Glutamato Deshidrogenasa/metabolismo , Glutamato Sintasa/metabolismo , Ácido Glutámico/biosíntesis , Bacillus subtilis/genética , Proteínas Bacterianas , Glutamato Deshidrogenasa/genética , Glutamato Sintasa/genética
4.
Nature ; 548(7666): 244-247, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783726

RESUMEN

The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Amiloide , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica , Nanoestructuras/química , Mutación Puntual , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(30): 7662-7669, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29967179

RESUMEN

The formation of atherosclerotic plaques in the blood vessel walls is the result of LDL particle uptake, and consequently of cholesterol accumulation in macrophage cells. Excess cholesterol accumulation eventually results in cholesterol crystal deposition, the hallmark of mature atheromas. We followed the formation of cholesterol crystals in J774A.1 macrophage cells with time, during accumulation of LDL particles, using a previously developed correlative cryosoft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM) technique. We show, in the initial accumulation stages, formation of small quadrilateral crystal plates associated with the cell plasma membrane, which may subsequently assemble into large aggregates. These plates match crystals of the commonly observed cholesterol monohydrate triclinic structure. Large rod-like cholesterol crystals form at a later stage in intracellular locations. Using cryotransmission electron microscopy (cryo-TEM) and cryoelectron diffraction (cryo-ED), we show that the structure of the large elongated rods corresponds to that of monoclinic cholesterol monohydrate, a recently determined polymorph of the triclinic crystal structure. These monoclinic crystals form with an unusual hollow cylinder or helical architecture, which is preserved in the mature rod-like crystals. The rod-like morphology is akin to that observed in crystals isolated from atheromas. We suggest that the crystals in the atherosclerotic plaques preserve in their morphology the memory of the structure in which they were formed. The identification of the polymorph structure, besides explaining the different crystal morphologies, may serve to elucidate mechanisms of cholesterol segregation and precipitation in atherosclerotic plaques.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Aterosclerosis/patología , Línea Celular , Microscopía por Crioelectrón , Macrófagos/ultraestructura , Ratones , Placa Aterosclerótica/ultraestructura , Tomografía por Rayos X
6.
Proc Natl Acad Sci U S A ; 114(42): 11139-11144, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973937

RESUMEN

Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.


Asunto(s)
Microscopía por Crioelectrón/métodos , Hierro/análisis , Microscopía Electrónica de Transmisión de Rastreo/métodos , Zinc/análisis , Ferritinas
7.
J Struct Biol ; 207(1): 12-20, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30991101

RESUMEN

Guanine crystals are used by certain animals, including vertebrates, to produce structural colors or to enhance vision, because of their distinctive reflective properties. Here we use cryo-SEM, cryo- FIB SEM and Raman spectroscopic imaging to characterize crystalline inclusions in a single celled photosynthesizing marine dinoflagellate species. We demonstrate spectroscopically that these inclusions are blocky crystals of anhydrous guanine in the ß-polymorph. Two-dimensional cryo-SEM and three-dimensional cryo-FIB-SEM serial block face imaging show that the deposits of anhydrous guanine crystals are closely associated with the chloroplasts. We suggest that the crystalline deposits scatter light either to enhance light exploitation by the chloroplasts, or possibly for protection from UV radiation. This is consistent with the crystal locations within the cell, their shapes and their sizes. As the dinoflagellates are extremely abundant in the oceans and are a major group of photosynthesizing marine organisms, the presence of guanine crystals in this marine organism may have broad significance.


Asunto(s)
Dinoflagelados/química , Guanina/química , Organismos Acuáticos , Cloroplastos/efectos de la radiación , Microscopía por Crioelectrón , Cristalización , Guanina/fisiología , Microscopía Electrónica de Rastreo , Estructura Molecular , Espectrometría Raman
8.
J Am Chem Soc ; 141(50): 19736-19745, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31762278

RESUMEN

The eyes of many fish contain a reflecting layer of organic crystals partially surrounding the photoreceptors of the retina, which are commonly believed to be composed of guanine. Here we study an unusual fish eye from Stizostedion lucioperca that contains two layers of organic crystals. The crystals in the outer layer are thin plates, whereas the crystals in the inner tapetum layer are block-shaped. We show that the outer layer indeed contains guanine crystals. Analyses of solutions of crystals from the inner layer indicated that the block-shaped crystals are composed of xanthopterin. A model of the structure of the block-shaped crystals was produced using symmetry arguments based on electron diffraction data followed by dispersion-augmented DFT calculations. The resulting crystal structure of xanthopterin included, however, a problematic repulsive interaction between C═O and N of two adjacent molecules. Knowing that dissolved 7,8-dihydroxanthopterin can oxidize to xanthopterin, we replaced xanthopterin with 7,8-dihydroxanthopterin in the model. An excellent fit was obtained with the powder X-ray diffraction pattern of the biogenic crystals. We then analyzed the biogenic block-shaped crystals in their solid state, using MALDI-TOF and Raman spectroscopy. All three methods unequivocally prove that the block-shaped crystals in the eye of S. lucioperca are crystals of 7,8-dihydroxanthopterin. On the basis of the eye anatomy, we deduce that the guanine crystals form a reflective layer producing the silvery color present on part of the eye surface, whereas the block-shaped crystals backscatter light into the retina in order to increase the light sensitivity of the eye.

9.
J Cell Sci ; 128(3): 589-98, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25501811

RESUMEN

The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Dominio Catalítico/efectos de los fármacos , Subunidades de Proteína/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Línea Celular , Flavina-Adenina Dinucleótido/genética , Células HEK293 , Humanos , Insectos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Conformación Proteica
10.
Angew Chem Int Ed Engl ; 56(32): 9420-9424, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626984

RESUMEN

Guanine crystals are widely used in nature as components of multilayer reflectors. Guanine-based reflective systems found in the copepod cuticle and in the mirror of the scallop eye are unique in that the multilayered reflectors are tiled to form a contiguous packed array. In the copepod cuticle, hexagonal crystals are closely packed to produce brilliant colors. In the scallop eye, square crystals are tiled to obtain an image-forming reflecting mirror. The tiles are about 1 µm in size and 70 nm thick. According to analysis of their electron diffraction patterns, the hexagon and square tiles are not single crystals. Rather, each tile type is a composite of what appears to be three crystalline domains differently oriented and stacked onto one another, achieved through a twice-repeated twinning about their ⟨011⟩ and ⟨021⟩ crystal axes, respectively. By these means, the monoclinic guanine crystal mimics higher symmetry hexagonal and tetragonal structures to achieve unique morphologies.

11.
Biomacromolecules ; 17(2): 514-22, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26686226

RESUMEN

A novel human ferritin-based nanocarrier, composed of 24 modified monomers able to auto-assemble into a modified protein cage, was produced and used as selective carrier of anti-tumor payloads. Each modified monomer derives from the genetic fusion of two distinct modules, namely the heavy chain of human ferritin (HFt) and a stabilizing/protective PAS polypeptide sequence rich in proline (P), serine (S), and alanine (A) residues. Two genetically fused protein constructs containing PAS polymers with 40- and 75-residue lengths, respectively, were compared. They were produced and purified as recombinant proteins in Escherichia coli at high yields. Both preparations were highly soluble and stable in vitro as well as in mouse plasma. Size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy results indicated that PASylated ferritins are fully assembled and highly monodispersed. In addition, yields and stability of encapsulated doxorubicin were significantly better for both HFt-PAS proteins than for wild-type HFt. Importantly, PAS sequences considerably prolonged the half-life of HFt in the mouse bloodstream. Finally, our doxorubicin-loaded nanocages preserved the pharmacological activity of the drug. Taken together, these results indicate that both of the developed HFt-PAS fusion proteins are promising nanocarriers for future applications in cancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Alanina/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Ferritinas/química , Semivida , Humanos , Ratones Endogámicos BALB C , Péptidos/química , Polietilenglicoles/química , Prolina/química , Proteínas Recombinantes de Fusión/química , Serina/química
12.
J Biol Chem ; 289(7): 4346-55, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24338474

RESUMEN

γ-Secretase complexes are involved in the generation of amyloid-ß (Aß) in the brain. Therefore, γ-secretase has been proposed as a potential therapeutic target in Alzheimer disease (AD). Targeting γ-secretase activity in AD requires the pharmacological dissociation of the processing of physiological relevant substrates and the generation of "toxic" Aß. Previous reports suggest the differential targeting of γ-secretase complexes, based on their subunit composition, as a valid strategy. However, little is known about the biochemical properties of the different complexes, and key questions regarding their Aß product profiles should be first addressed. Here, we expressed, purified, and analyzed, under the same conditions, the endopeptidase and carboxypeptidase-like activities of the four γ-secretase complexes present in humans. We find that the nature of the catalytic subunit in the complex affects both activities. Interestingly, PSEN2 complexes discriminate between the Aß40 and Aß38 production lines, indicating that Aß generation in one or the other pathway can be dissociated. In contrast, the APH1 subunit mainly affects the carboxypeptidase-like activity, with APH1B complexes favoring the generation of longer Aß peptides. In addition, we determined that expression of a single human γ-secretase complex in cell lines retains the intrinsic attributes of the protease while present in the membrane, providing validation for the in vitro studies. In conclusion, our data show that each γ-secretase complex produces a characteristic Aß signature. The qualitative and quantitative differences between different γ-secretase complexes could be used to advance drug development in AD and other disorders.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Animales , Línea Celular , Endopeptidasas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Fragmentos de Péptidos/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
13.
J Cell Sci ; 126(Pt 18): 4099-107, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843624

RESUMEN

Integrin-mediated focal adhesions (FAs) are large, multi-protein complexes that link the actin cytoskeleton to the extracellular matrix and take part in adhesion-mediated signaling. These adhesions are highly complex and diverse at the molecular level; thus, assigning particular structural or signaling functions to specific components is highly challenging. Here, we combined functional, structural and biophysical approaches to assess the role of a major FA component, namely, integrin-linked kinase (ILK), in adhesion formation. We show here that ILK plays a key role in the formation of focal complexes, early forms of integrin adhesions, and confirm its involvement in the assembly of fibronectin-bound fibrillar adhesions. Examination of ILK-null fibroblasts by cryo-electron tomography pointed to major structural changes in their FAs, manifested as disarray of the associated actin filaments and an increase in the packing density of FA-related particles. Interestingly, adhesion of the mutant cells to the substrate required a higher ligand density than in control cells. These data indicate that ILK has a key role in integrin adhesion assembly and sub-structure, and in the regulation of the FA-associated cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Adhesión Celular , Matriz Extracelular/fisiología , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Humanos , Ratones , Unión Proteica , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal
14.
EMBO J ; 28(8): 1157-69, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19262563

RESUMEN

Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis.


Asunto(s)
Condrocitos , Citocinesis/fisiología , Profilinas/metabolismo , Actinas/metabolismo , Animales , Huesos/anomalías , Huesos/fisiología , Cartílago/anomalías , Cartílago/fisiología , Condrocitos/citología , Condrocitos/fisiología , Marcación de Gen , Ratones , Ratones Transgénicos , Miosinas/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Profilinas/genética
15.
J Cell Sci ; 124(Pt 2): 207-15, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21187346

RESUMEN

The completion of cytokinesis is dominated by the midbody, a tightly-packed microtubule (MT)-based bridge that transiently connects the two daughter cells. Assembled from condensed, spindle-MTs and numerous associated proteins, the midbody gradually narrows down until daughter cell partitioning occurs at this site. Although described many years ago, detailed understanding of the abscission process remains lacking. Applying cryo-electron tomography to purified midbodies, in combination with fluorescence microscopy, we present here new insight into MT organization within the midbody. We find that the midbody is spatially divided into a core bundle of MTs that traverses the electron-dense overlap region (continuous MTs), surrounded by MTs that terminate within the overlap region (polar MTs). Residual continuous MTs remained intact up to the verge of abscission, whereas the residual polar MTs lost their organization and retreated from the overlap region at late cytokinesis stages. A detailed localization of the microtubule-bundling protein PRC1 supports the above notion. Our study thus provides a detailed account of the abscission process and suggests that the midbody, having acquired a distinct MT architecture as compared to the preceding central spindle, actively facilitates the final stage of cytokinesis.


Asunto(s)
Células/citología , Citocinesis , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Animales , Células CHO , Línea Celular , Células/metabolismo , Células/ultraestructura , Cricetinae , Cricetulus , Tomografía con Microscopio Electrónico , Transporte de Proteínas
16.
Nat Commun ; 14(1): 480, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717559

RESUMEN

Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Pared Celular/metabolismo , Orgánulos/metabolismo , Dióxido de Silicio/química , Exocitosis
17.
Nat Commun ; 12(1): 2967, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016970

RESUMEN

Allostery is a pervasive principle to regulate protein function. Growing evidence suggests that also DNA is capable of transmitting allosteric signals. Yet, whether and how DNA-mediated allostery plays a regulatory role in gene expression remained unclear. Here, we show that DNA indeed transmits allosteric signals over long distances to boost the binding cooperativity of transcription factors. Phenotype switching in Bacillus subtilis requires an all-or-none promoter binding of multiple ComK proteins. We use single-molecule FRET to demonstrate that ComK-binding at one promoter site increases affinity at a distant site. Cryo-EM structures of the complex between ComK and its promoter demonstrate that this coupling is due to mechanical forces that alter DNA curvature. Modifications of the spacer between sites tune cooperativity and show how to control allostery, which allows a fine-tuning of the dynamic properties of genetic circuits.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/química , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Regulación Alostérica/genética , Sitios de Unión/genética , ADN Bacteriano/genética , Redes Reguladoras de Genes , Conformación de Ácido Nucleico , Fenotipo , Regiones Promotoras Genéticas/genética
18.
Nat Chem ; 13(10): 940-949, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34489564

RESUMEN

Coulombic interactions can be used to assemble charged nanoparticles into higher-order structures, but the process requires oppositely charged partners that are similarly sized. The ability to mediate the assembly of such charged nanoparticles using structurally simple small molecules would greatly facilitate the fabrication of nanostructured materials and harnessing their applications in catalysis, sensing and photonics. Here we show that small molecules with as few as three electric charges can effectively induce attractive interactions between oppositely charged nanoparticles in water. These interactions can guide the assembly of charged nanoparticles into colloidal crystals of a quality previously only thought to result from their co-crystallization with oppositely charged nanoparticles of a similar size. Transient nanoparticle assemblies can be generated using positively charged nanoparticles and multiply charged anions that are enzymatically hydrolysed into mono- and/or dianions. Our findings demonstrate an approach for the facile fabrication, manipulation and further investigation of static and dynamic nanostructured materials in aqueous environments.

19.
Nat Microbiol ; 6(9): 1188-1198, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400835

RESUMEN

SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/administración & dosificación , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/química , COVID-19/genética , COVID-19/metabolismo , Cricetinae , Diseño de Fármacos , Evolución Molecular , Femenino , Humanos , Masculino , Mesocricetus , Simulación de Dinámica Molecular , Mutación , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
20.
Structure ; 28(11): 1179-1181, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147474

RESUMEN

In this issue of Structure, breakthroughs in cryo-EM/ET research are presented. Klebl et al. (2020) demonstrate how speed in sample vitrification impacts the quality of macromolecular particles in resultant cryo-EM grids. Wu et al. (2020) combine fluorescence, ion beam milling, and tomography to unravel unique features in vitrified yeast cells.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Hielo , Sustancias Macromoleculares , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA