Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 22726, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815447

RESUMEN

The present research is designed to examine the dynamic of the quantum computational speed in a nanowire system through the orthogonality speed when three distinct types of magnetic fields are applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we investigate the action of the magnetic fields, the spin-orbit coupling, and the system's initial states on the orthogonality speed. The observed results reveal that a substantial correlation between the intensity of the spin-orbit coupling and the dynamics of the orthogonality speed, where the orthogonality speed decreasing as the spin-orbit coupling increases. Furthermore, the initial states of the nanowire system are critical for regulating the speed of transmuting the information and computations.

2.
J Adv Res ; 29: 147-157, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33842012

RESUMEN

Introduction: Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors. Objectives: To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity. Methods: To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). Results: In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to 10-8 . Conclusion: Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA