RESUMEN
Lysosomes have crucial roles in regulating eukaryotic metabolism and cell growth by acting as signalling platforms to sense and respond to changes in nutrient and energy availability1. LYCHOS (GPR155) is a lysosomal transmembrane protein that functions as a cholesterol sensor, facilitating the cholesterol-dependent activation of the master protein kinase mechanistic target of rapamycin complex 1 (mTORC1)2. However, the structural basis of LYCHOS assembly and activity remains unclear. Here we determine several high-resolution cryo-electron microscopy structures of human LYCHOS, revealing a homodimeric transmembrane assembly of a transporter-like domain fused to a G-protein-coupled receptor (GPCR) domain. The class B2-like GPCR domain is captured in the apo state and packs against the surface of the transporter-like domain, providing an unusual example of a GPCR as a domain in a larger transmembrane assembly. Cholesterol sensing is mediated by a conserved cholesterol-binding motif, positioned between the GPCR and transporter domains. We reveal that the LYCHOS transporter-like domain is an orthologue of the plant PIN-FORMED (PIN) auxin transporter family, and has greater structural similarity to plant auxin transporters than to known human transporters. Activity assays support a model in which the LYCHOS transporter and GPCR domains coordinate to sense cholesterol and regulate mTORC1 activation.
Asunto(s)
Colesterol , Microscopía por Crioelectrón , Modelos Moleculares , Dominios Proteicos , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Colesterol/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Multimerización de Proteína , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Apoproteínas/metabolismo , Apoproteínas/química , Apoproteínas/ultraestructura , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/químicaRESUMEN
Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.
Asunto(s)
Subunidad alfa del Receptor de Interleucina-18/inmunología , Interleucina-1/inmunología , Leucocitos Mononucleares/inmunología , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-1/genética , Subunidad alfa del Receptor de Interleucina-18/antagonistas & inhibidores , Subunidad alfa del Receptor de Interleucina-18/genética , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/inmunología , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Tirosina Quinasa c-MerRESUMEN
Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by â¼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Animales , Unión Proteica , Fosfatos de Fosfatidilinositol/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/química , Proteínas de Unión al GTP rho/metabolismoRESUMEN
The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10-17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.
Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genéticaRESUMEN
Ligand-dependent differences in the regulation and internalization of the µ-opioid receptor (MOR) have been linked to the severity of adverse effects that limit opiate use in pain management. MOR activation by morphine or [d-Ala2,N-MePhe4, Gly-ol]enkephalin (DAMGO) causes differences in spatiotemporal signaling dependent on MOR distribution at the plasma membrane. Morphine stimulation of MOR activates a Gαi/o-Gßγ-protein kinase C (PKC) α phosphorylation pathway that limits MOR distribution and is associated with a sustained increase in cytosolic extracellular signal-regulated kinase (ERK) activity. In contrast, DAMGO causes a redistribution of the MOR at the plasma membrane (before receptor internalization) that facilitates transient activation of cytosolic and nuclear ERK. Here, we used proximity biotinylation proteomics to dissect the different protein-interaction networks that underlie the spatiotemporal signaling of morphine and DAMGO. We found that DAMGO, but not morphine, activates Ras-related C3 botulinum toxin substrate 1 (Rac1). Both Rac1 and nuclear ERK activity depended on the scaffolding proteins IQ motif-containing GTPase-activating protein-1 (IQGAP1) and Crk-like (CRKL) protein. In contrast, morphine increased the proximity of the MOR to desmosomal proteins, which form specialized and highly-ordered membrane domains. Knockdown of two desmosomal proteins, junction plakoglobin or desmocolin-1, switched the morphine spatiotemporal signaling profile to mimic that of DAMGO, resulting in a transient increase in nuclear ERK activity. The identification of the MOR-interaction networks that control differential spatiotemporal signaling reported here is an important step toward understanding how signal compartmentalization contributes to opioid-induced responses, including anti-nociception and the development of tolerance and dependence.
Asunto(s)
Analgésicos Opioides/metabolismo , Receptores Opioides mu/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Analgésicos Opioides/farmacología , Animales , Membrana Celular/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Células HEK293 , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas/fisiología , Morfina/metabolismo , Morfina/farmacología , Fosforilación , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Receptores Opioides mu/genética , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/fisiología , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/fisiologíaRESUMEN
The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and ß), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.
Asunto(s)
Venenos de los Peces/química , Perforina/química , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Colesterol/química , Complejo de Ataque a Membrana del Sistema Complemento/química , Cristalografía por Rayos X , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Solubilidad , Homología Estructural de ProteínaRESUMEN
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gßγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.
Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animales , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mutación , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Fosfatos de Fosfatidilinositol/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de SeñalRESUMEN
The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID) forms a long, gently undulating alpha helix around which one Cdc31 and two Sus1 chains are wrapped. Sus1 has an articulated helical hairpin fold that facilitates its wrapping around Sac3. In vivo studies using engineered mutations that selectively disrupted binding of individual chains to Sac3 indicated that Sus1 and Cdc31 function synergistically to promote NPC association of TREX-2 and mRNA nuclear export. These data indicate Sac3(CID) provides a scaffold within TREX-2 to integrate interactions between protein complexes to facilitate the coupling of transcription and mRNA export during gene expression.
Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Ciclo Celular/química , Poro Nuclear/metabolismo , Proteínas Nucleares/química , Transporte de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Hibridación in Situ , Microscopía Fluorescente , Datos de Secuencia Molecular , Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Porinas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
Polyglutamine expansion is a hallmark of nine neurodegenerative diseases, with protein aggregation intrinsically linked to disease progression. Although polyglutamine expansion accelerates protein aggregation, the misfolding process is frequently instigated by flanking domains. For example, polyglutamine expansion in ataxin-3 allosterically triggers the aggregation of the catalytic Josephin domain. The molecular mechanism that underpins this allosteric aggregation trigger remains to be determined. Here, we establish that polyglutamine expansion increases the molecular mobility of two juxtaposed helices critical to ataxin-3 deubiquitinase activity. Within one of these helices, we identified a highly amyloidogenic sequence motif that instigates aggregation and forms the core of the growing fibril. Critically, by mutating residues within this key region, we decrease local structural fluctuations to slow ataxin-3 aggregation. This provides significant insight, down to the molecular level, into how polyglutamine expansion drives aggregation and explains the positive correlation between polyglutamine tract length, protein aggregation, and disease severity.
Asunto(s)
Ataxina-3/química , Enfermedad de Machado-Joseph/metabolismo , Péptidos/química , Alanina/química , Sitio Alostérico , Proteínas Amiloidogénicas/química , Benzotiazoles , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Progresión de la Enfermedad , Escherichia coli/metabolismo , Variación Genética , Humanos , Microscopía Electrónica de Transmisión , Mutagénesis , Mapeo Peptídico , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Espectrometría de Masas en Tándem , Tiazoles/químicaRESUMEN
The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gßγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gßγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gßγ releases inhibitory C-terminal domains to expose the Rac1 binding site.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/química , Fosfatos de Fosfatidilinositol/química , Proteínas Recombinantes de Fusión/química , Proteína de Unión al GTP rac1/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Células MCF-7 , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Células Sf9 , Transducción de Señal , Spodoptera , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismoRESUMEN
With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.
Asunto(s)
Compartimento Celular , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , HumanosRESUMEN
BACKGROUND: The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin 'suicide' inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. RESULTS: We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. CONCLUSIONS: In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon 'switching'. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of each of the Serpin 42 Da isoforms.
Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Inhibidores de Serina Proteinasa/química , Serpinas/química , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Proteínas de Drosophila/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismoRESUMEN
The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCγ1/Ca 2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro . Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca 2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.
RESUMEN
P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gßγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gßγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Neoplasias , Sitios de Unión , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/metabolismo , Dominios Proteicos , Transducción de SeñalRESUMEN
Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.
Asunto(s)
Antiinflamatorios , Citocinas , Citocinas/metabolismo , Inmunidad Innata , Inmunomodulación , Ingeniería de ProteínasRESUMEN
Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended alpha-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended alpha-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix alpha1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049-12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.
Asunto(s)
Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Transactivadores/química , Factores de Transcripción/química , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/genética , Porinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.
Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Neurofibromatosis 1/genética , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Membrana Celular/metabolismo , Proliferación Celular/genética , Microscopía por Crioelectrón , Humanos , Mutación con Pérdida de Función/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Conformación ProteicaRESUMEN
The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gßγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gßγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Neoplasias , Fosfohidrolasa PTEN , Proteína de Unión al GTP rac1 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Mutación , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismoRESUMEN
INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3ß lysosomal degradation and activation of Wnt/ß-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/ß-catenin therapies.
Asunto(s)
Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/genética , Endosomas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lisosomas/metabolismo , Ratones , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Proteómica , Tiazoles/farmacología , Tiazoles/uso terapéutico , Análisis de Matrices Tisulares , Vía de Señalización Wnt/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7RESUMEN
Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1ß and IL-18, inflammasome activation, and pyroptosis in detail. IL-37 inhibited IL-1ß production by NLRP3 and AIM2 inflammasomes, and IL-18 production by the NLRP3 inflammasome. This inhibition was partially attributable to effects on gene expression: whereas IL-37 did not affect lipopolysaccharide (LPS)-induced mRNA expression of Il18 or inflammasome components, IL-37-transgenic BMDM displayed an up to 83% inhibition of baseline and LPS-stimulated Il1b compared to their wild-type counterparts. Importantly, we observed that IL-37 suppresses nigericin- and silica-induced ASC oligomerization/speck formation (a step in inflammasome activation and subsequent caspase-1 activation), and pyroptosis (-50%). In mice subjected to endotoxemia, IL-37 inhibited plasma IL-1ß (-78% compared to wild-type animals) and IL-18 (-61%). Thus, our study adds suppression of inflammasome activity to the portfolio of anti-inflammatory pathways employed by IL-37, highlighting this cytokine as a potential tool for treating inflammasome-driven diseases.