Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932938

RESUMEN

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Asunto(s)
Exoma , Variación Genética , Estudio de Asociación del Genoma Completo , Lípidos/sangre , Sistemas de Lectura Abierta , Alelos , Glucemia/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Anotación de Secuencia Molecular , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595373

RESUMEN

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Asunto(s)
ADN Mitocondrial/genética , Genes Mitocondriales/genética , Variación Genética/genética , Metabolismo/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Adipocitos/metabolismo , Índice de Masa Corporal , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Estudios de Cohortes , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Insulina/metabolismo , Sitios de Carácter Cuantitativo , Relación Cintura-Cadera
3.
Am J Epidemiol ; 190(10): 1977-1992, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861317

RESUMEN

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenómica/métodos , Medicina de Precisión/métodos , Agregación de Datos , Humanos , Difusión de la Información , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Evaluación de Programas y Proyectos de Salud , Estados Unidos
4.
Am J Hum Genet ; 96(2): 183-93, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620206

RESUMEN

The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual's place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual's mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Genética de Población , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Grupos Raciales/genética , Humanos , Modelos Logísticos , Modelos Genéticos
5.
Nicotine Tob Res ; 20(4): 448-457, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28520984

RESUMEN

Introduction: Genetic variants associated with nicotine dependence have previously been identified, primarily in European-ancestry populations. No genome-wide association studies (GWAS) have been reported for smoking behaviors in Hispanics/Latinos in the United States and Latin America, who are of mixed ancestry with European, African, and American Indigenous components. Methods: We examined genetic associations with smoking behaviors in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (N = 12 741 with smoking data, 5119 ever-smokers), using ~2.3 million genotyped variants imputed to the 1000 Genomes Project phase 3. Mixed logistic regression models accounted for population structure, sampling, relatedness, sex, and age. Results: The known region of CHRNA5, which encodes the α5 cholinergic nicotinic receptor subunit, was associated with heavy smoking at genome-wide significance (p ≤ 5 × 10-8) in a comparison of 1929 ever-smokers reporting cigarettes per day (CPD) > 10 versus 3156 reporting CPD ≤ 10. The functional variant rs16969968 in CHRNA5 had a p value of 2.20 × 10-7 and odds ratio (OR) of 1.32 for the minor allele (A); its minor allele frequency was 0.22 overall and similar across Hispanic/Latino background groups (Central American = 0.17; South American = 0.19; Mexican = 0.18; Puerto Rican = 0.22; Cuban = 0.29; Dominican = 0.19). CHRNA4 on chromosome 20 attained p < 10-4, supporting prior findings in non-Hispanics. For nondaily smoking, which is prevalent in Hispanic/Latino smokers, compared to daily smoking, loci on chromosomes 2 and 4 achieved genome-wide significance; replication attempts were limited by small Hispanic/Latino sample sizes. Conclusions: Associations of nicotinic receptor gene variants with smoking, first reported in non-Hispanic European-ancestry populations, generalized to Hispanics/Latinos despite different patterns of smoking behavior. Implications: We conducted the first large-scale genome-wide association study (GWAS) of smoking behavior in a US Hispanic/Latino cohort, and the first GWAS of daily/nondaily smoking in any population. Results show that the region of the nicotinic receptor subunit gene CHRNA5, which in non-Hispanic European-ancestry smokers has been associated with heavy smoking as well as cessation and treatment efficacy, is also significantly associated with heavy smoking in this Hispanic/Latino cohort. The results are an important addition to understanding the impact of genetic variants in understudied Hispanic/Latino smokers.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Hispánicos o Latinos/genética , Proteínas del Tejido Nervioso/genética , Salud Pública/métodos , Receptores Nicotínicos/genética , Fumar/epidemiología , Fumar/genética , Adulto , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología
6.
Lipids Health Dis ; 16(1): 200, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29025430

RESUMEN

BACKGROUND: Despite ethnic disparities in lipid profiles, there are few genome-wide association studies investigating genetic variation of lipids in non-European ancestry populations. In this study, we present findings from genetic association analyses for total cholesterol, low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides in a large Hispanic/Latino cohort in the U.S., the Hispanic Community Health Study / Study of Latinos (HCHS/SOL). METHODS: We estimated a heritability of approximately 20% for each lipid trait, similar to previous estimates in Europeans. To search for novel lipid loci, we performed conditional association analysis in which the statistical model was adjusted for previously reported SNPs associated with any of the four lipid traits. SNPs that remained genome-wide significant (P < 5 × 10-8) after conditioning on known loci were evaluated for replication. RESULTS: We identified eight potentially novel lipid signals with minor allele frequencies <1%, none of which replicated. We tested previously reported SNP-trait associations for generalization to Hispanics/Latinos via a statistical framework. The generalization analysis revealed that approximately 50% of previously established lipid variants generalize to HCHS/SOL based on directional FDR r-value < 0.05. Some failures to generalize were due to lack of power. CONCLUSIONS: These results demonstrate that many loci associated with lipid levels are shared across populations.


Asunto(s)
Alelos , Hispánicos o Latinos/genética , Metabolismo de los Lípidos/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Adolescente , Adulto , Anciano , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Sitios Genéticos , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Salud Pública , Triglicéridos/sangre , Estados Unidos
7.
Am J Hum Genet ; 87(6): 848-56, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21109223

RESUMEN

Determining historical sex ratios throughout human evolution can provide insight into patterns of genomic variation, the structure and composition of ancient populations, and the cultural factors that influence the sex ratio (e.g., sex-specific migration rates). Although numerous studies have suggested that unequal sex ratios have existed in human evolutionary history, a coherent picture of sex-biased processes has yet to emerge. For example, two recent studies compared human X chromosome to autosomal variation to make inferences about historical sex ratios but reached seemingly contradictory conclusions, with one study finding evidence for a male bias and the other study identifying a female bias. Here, we show that a large part of this discrepancy can be explained by methodological differences. Specifically, through reanalysis of empirical data, derivation of explicit analytical formulae, and extensive simulations we demonstrate that two estimators of the effective sex ratio based on population structure and nucleotide diversity preferentially detect biases that have occurred on different timescales. Our results clarify apparently contradictory evidence on the role of sex-biased processes in human evolutionary history and show that extant patterns of human genomic variation are consistent with both a recent male bias and an earlier, persistent female bias.


Asunto(s)
Razón de Masculinidad , Cromosomas Humanos X , Femenino , Humanos , Masculino
8.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385311

RESUMEN

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

9.
Nat Commun ; 12(1): 2182, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846329

RESUMEN

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.


Asunto(s)
Factores de Riesgo Cardiometabólico , Cromosomas Humanos X/genética , Lípidos/sangre , Proteínas del Ojo/metabolismo , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Fenómica , Polimorfismo de Nucleótido Simple/genética , Tejido Subcutáneo/metabolismo , Secuenciación Completa del Genoma
10.
Science ; 373(6558): 1030-1035, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34385354

RESUMEN

Biological mechanisms underlying human germline mutations remain largely unknown. We statistically decompose variation in the rate and spectra of mutations along the genome using volume-regularized nonnegative matrix factorization. The analysis of a sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. We provide a biological interpretation for seven of these processes. We associate one process with bulky DNA lesions that are resolved asymmetrically with respect to transcription and replication. Two processes track direction of replication fork and replication timing, respectively. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions and a mutagenic effect of long interspersed nuclear elements. We localize a mutagenic process specific to oocytes from population sequencing data. This process appears transcriptionally asymmetric.


Asunto(s)
Genoma Humano , Mutación de Línea Germinal , Algoritmos , Islas de CpG , Daño del ADN , Desmetilación del ADN , Análisis Mutacional de ADN , Replicación del ADN , Variación Genética , Células Germinativas , Humanos , Elementos de Nucleótido Esparcido Largo , Mutagénesis , Oocitos/fisiología , Transcripción Genética
11.
Obesity (Silver Spring) ; 24(11): 2407-2413, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663718

RESUMEN

OBJECTIVE: Associations of IRS1 genetic variation with adiposity and metabolic profile in U.S. Hispanic/Latino individuals of diverse backgrounds were examined. METHODS: Previously genome-wide association study-identified IRS1 variants (rs2943650, rs2972146, rs2943641, and rs2943634) as related to body fat percentage (BF%) and multiple metabolic traits were tested among up to 12,730 adults (5,232 men; 7,515 women) from the Hispanic Community Health Study/Study of Latinos. RESULTS: The C-allele (frequency = 26%) of rs2943650 was significantly associated with higher BF% overall (ß = 0.34 ± 0.11% per allele; P = 0.002) and in women (ß = 0.41 ± 0.14% per C-allele; P = 0.003), but not in men (ß = 0.28 ± 0.18% per C-allele; P = 0.11), though there was no significant sex difference. Using the inverse normal-transformed data to compare effect sizes, it was found that the association with BF% was stronger in Hispanic/Latino women than that previously reported in European women (ß = 0.054 ± 0.018SD vs. ß = 0.008 ± 0.011SD per C-allele; P = 0.03). The BF%-increasing allele of rs2943650 was significantly associated with lower levels of fasting insulin, homeostatic model assessment of insulin resistance, hemoglobin A1c, and triglycerides and higher high-density lipoprotein cholesterol (P < 0.05). CONCLUSIONS: This study confirmed and extended previous findings of IRS1 variation associated with increased adiposity but a favorable metabolic profile in U.S. Hispanics/Latinos, with a relatively stronger genetic effect on BF% in Hispanic/Latino women compared with European women.


Asunto(s)
Adiposidad/genética , Variación Genética , Hispánicos o Latinos/genética , Proteínas Sustrato del Receptor de Insulina/genética , Metaboloma , Adulto , Alelos , HDL-Colesterol/sangre , Etnicidad , Ayuno/sangre , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/análisis , Humanos , Insulina/sangre , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Obesidad/genética , Factores de Riesgo , Factores Sexuales , Triglicéridos/sangre , Estados Unidos , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA