Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mol Genet ; 25(21): 4726-4738, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28172817

RESUMEN

Genome-wide association studies (GWAS) have identified multiple common susceptibility loci for pancreatic cancer. Here we report fine-mapping and functional analysis of one such locus residing in a 610 kb gene desert on chr13q22.1 (marked by rs9543325). The closest candidate genes, KLF5, KLF12, PIBF1, DIS3 and BORA, range in distance from 265-586 kb. Sequencing three sub-regions containing the top ranked SNPs by imputation P-value revealed a 30 bp insertion/deletion (indel) variant that was significantly associated with pancreatic cancer risk (rs386772267, P = 2.30 × 10-11, OR = 1.22, 95% CI 1.15-1.28) and highly correlated to rs9543325 (r2 = 0.97 in the 1000 Genomes EUR population). This indel was the most significant cis-eQTL variant in a set of 222 histologically normal pancreatic tissue samples (ß = 0.26, P = 0.004), with the insertion (risk-increasing) allele associated with reduced DIS3 expression. DIS3 encodes a catalytic subunit of the nuclear RNA exosome complex that mediates RNA processing and decay, and is mutated in several cancers. Chromosome conformation capture revealed a long range (570 kb) physical interaction between a sub-region of the risk locus, containing rs386772267, and a region ∼6 kb upstream of DIS3 Finally, repressor regulatory activity and allele-specific protein binding by transcription factors of the TCF/LEF family were observed for the risk-increasing allele of rs386772267, indicating that expression regulation at this risk locus may be influenced by the Wnt signaling pathway. In conclusion, we have identified a putative functional indel variant at chr13q22.1 that associates with decreased DIS3 expression in carriers of pancreatic cancer risk-increasing alleles, and could therefore affect nuclear RNA processing and/or decay.


Asunto(s)
Cromosomas Humanos Par 13 , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Neoplasias Pancreáticas/genética , Alelos , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico/métodos , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/genética
2.
Carcinogenesis ; 35(12): 2670-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25233928

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Factor Nuclear 1-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Apoptosis , Biomarcadores de Tumor/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Ciclo Celular , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Técnicas para Inmunoenzimas , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Pediatrics ; 136(5): 961-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26459644

RESUMEN

Pediatric primary and specialty practice has changed, with more to do, more regulation, and more family needs than in the past. Similarly, the needs of patients have changed, with more demographic diversity, family stress, and continued health disparities by race, ethnicity, and socioeconomic status. How can clinicians continue their dedicated service to children and ensure health equity in the face of these changes? This article outlines specific, practical, actionable, and evidence-based activities to help clinicians assess and address health disparities in practice. These tools may also support patient-centered medical home recognition, national and state cultural and linguistic competency standards, and quality benchmarks that are increasingly tied to payment. Clinicians can play a critical role in (1) diagnosing disparities in one's community and practice, (2) innovating new models to address social determinants of health, (3) addressing health literacy of families, (4) ensuring cultural competence and a culture of workplace equity, and (5) advocating for issues that address the root causes of health disparities. Culturally competent care that is sensitive to the needs, health literacy, and health beliefs of families can increase satisfaction, improve quality of care, and increase patient safety. Clinical care approaches to address social determinants of health and interrupting the intergenerational cycle of disadvantage include (1) screening for new health "vital signs" and connecting families to resources, (2) enhancing the comprehensiveness of services, (3) addressing family health in pediatric encounters, and (4) moving care outside the office into the community. Health system investment is required to support clinicians and practice innovation to ensure equity.


Asunto(s)
Disparidades en el Estado de Salud , Disparidades en Atención de Salud , Pediatría , Rol del Médico , Niño , Humanos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA