Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Methods ; 20(10): 1544-1552, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735569

RESUMEN

Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.


Asunto(s)
Proteínas Hedgehog , Optogenética , Humanos , Proteínas Hedgehog/metabolismo , Organoides/metabolismo , Diferenciación Celular , Expresión Génica
2.
Nucleic Acids Res ; 49(14): 8120-8134, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34233005

RESUMEN

Microsatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae. Broad variations in nuclease performances were detected on all repeat tracts. Wild-type Streptococcus pyogenes Cas9 (SpCas9) was more efficient than Staphylococcus aureus Cas9 on all repeats tested, except (CAG)33. Cas12a (Cpf1) was the most efficient on GAA trinucleotide repeats, whereas GC-rich repeats were more efficiently cut by SpCas9. The main genetic factor underlying Cas efficacy was the propensity of the recognition part of the sgRNA to form a stable secondary structure, independently of its structural part. This suggests that such structures form in vivo and interfere with sgRNA metabolism. The yeast genome contains 221 natural CAG/CTG and GAA/CTT trinucleotide repeats. Deep sequencing after nuclease induction identified three of them as carrying statistically significant low frequency mutations, corresponding to SpCas9 off-target double-strand breaks.


Asunto(s)
Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Enfermedades Genéticas Congénitas/genética , Repeticiones de Microsatélite/genética , Edición Génica , Humanos , Mutación/genética , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Repeticiones de Trinucleótidos/genética
3.
Clin Genet ; 99(2): 298-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124039

RESUMEN

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40
4.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA