Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hered ; 108(2): 107-119, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173059

RESUMEN

The family Lepilemuridae includes 26 species of sportive lemurs, most of which were recently described. The cryptic morphological differences confounded taxonomy until recent molecular studies; however, some species' boundaries remain uncertain. To better understand the genus Lepilemur, we analyzed 35 complete mitochondrial genomes representing all recognized 26 sportive lemur taxa and estimated divergence dates. With our dataset we recovered 25 reciprocally monophyletic lineages, as well as an admixed clade containing Lepilemur mittermeieri and Lepilemur dorsalis. Using modern distribution data, an ancestral area reconstruction and an ecological vicariance analysis were performed to trace the history of diversification and to test biogeographic hypotheses. We estimated the initial split between the eastern and western Lepilemur clades to have occurred in the Miocene. Divergence of most species occurred from the Pliocene to the Pleistocene. The biogeographic patterns recovered in this study were better addressed with a combinatorial approach including climate, watersheds, and rivers. Generally, current climate and watershed hypotheses performed better for western and eastern clades, while speciation of northern clades was not adequately supported using the ecological factors incorporated in this study. Thus, multiple mechanisms likely contributed to the speciation and distribution patterns in Lepilemur.


Asunto(s)
Especiación Genética , Genoma Mitocondrial , Lemuridae/clasificación , Filogenia , Animales , Clima , ADN Mitocondrial , Madagascar , Modelos Genéticos , Filogeografía
2.
Ecol Evol ; 4(13): 2675-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25077019

RESUMEN

Lemurs are among the world's most threatened mammals. The critically endangered black-and-white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ∼550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average F ST (0.247) and ΦST (0.544), and followed a pattern of isolation-by-distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re-evaluation of conservation management units moving forward.

3.
Gene ; 464(1-2): 44-9, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20547216

RESUMEN

The complete mitochondrial DNA (mtDNA) genome of Hubbard's or Zombitse sportive lemur (Lepilemur hubbardorum) was generated by polymerase chain reaction (PCR) amplification, primer-walking sequencing and fragment cloning. Comparative analyses of Hubbard's sportive lemur were conducted with available complete mitochondrial genome sequences from eight other lemur species. The mitochondrial genome of Hubbard's sportive lemur is 16,854 base pairs (bp) and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. Three rare start codons were found, in which GTG is the start codon for the ATPase 6 subunit gene (ATP), ATC for the NADH dehydrogenase (ND) 2 subunit gene, and ATT for the ND5 subunit gene. In the control region, sequence analysis found one repetitive unit between conserved sequence blocks (CSB)-1 and CSB-2 for L. hubbardorum. Comparative analysis of eight other lemur species showed different repetitive units between and outside of these two blocks. According to the phylogenetic analysis of the 12 heavy-strand encoded protein-coding genes, all nine lemur species representative of four lemuriformes families were monophyletic. This template and the newly designed primers described in this study will allow scientists to generate comparative sequences for all sportive lemurs to validate phylogenetic discrepancies in the genus Lepilemur and to evaluate evolutionary and biogeographic models.


Asunto(s)
Genoma Mitocondrial , Lemuridae/genética , Animales , Secuencia de Bases , ADN Mitocondrial , Masculino , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA