Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nano Lett ; 24(15): 4493-4497, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498733

RESUMEN

Strain solitons are quasi-dislocations that form in van der Waals materials to relieve the energy associated with lattice or rotational mismatch. Novel electronic properties of strain solitons were predicted and observed. To date, strain solitons have been observed only in exfoliated crystals or mechanically strained crystals. The lack of a scalable approach toward the generation of strain solitons poses a significant challenge in the study of and use of their properties. Here, we report the formation of strain solitons with epitaxial growth of bismuth on InSb(111)B by molecular beam epitaxy. The morphology of the strain solitons for films of varying thickness is characterized with scanning tunneling microscopy, and the local strain state is determined from atomic resolution images. Bending in the solitons is attributed to interactions with the interface, and large angle bending is associated with edge dislocations. Our results enable the scalable generation of strain solitons.

2.
Biotechnol Bioeng ; 112(7): 1376-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25656971

RESUMEN

A mathematical optimal control strategy for feeding operation was developed for fed-batch enzymatic hydrolysis of dilute acid pretreated lignocellulosic biomass based on a modified epidemic model. Cellulose conversion was maximized and glucose concentration achieved highest possible value over a fixed hydrolysis time. Boundaries of feeding rate and lignin content were set for feasible controls. Using the optimal control feeding strategy, glucose concentration and accumulated cellulose conversion reached up to 77.31 g/L and 72.08% in 100 h, which are 108.76% and 37.50% higher than in batch hydrolysis with same amount of enzyme consumption. Solids content in feeding source has a significant interference on system mass transfer. Optimal control is a useful tool for guiding operations in fed-batch and continuous processes as it enables process optimization through clear objective functions and feasible controls.


Asunto(s)
Biomasa , Glucosa/análisis , Lignina/metabolismo , Biotransformación , Hidrólisis , Modelos Teóricos
3.
Invest Radiol ; 58(10): 703-709, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939607

RESUMEN

OBJECTIVES: Two-dimensional shear wave elastography (SWE) has been limited in breast lesion characterization due to false-negative results from artifacts. The aim of this study was to evaluate an updated Food and Drug Administration-approved breast 2D-SWE algorithm and compare with the standard algorithm (SA). MATERIALS AND METHODS: This prospective, single-center study was approved by our local institutional review board and Health Insurance Portability and Accountability Act compliant. From April 25, 2019 to May 2, 2022, raw shear wave data were saved on patients having screening or diagnostic breast ultrasound on a Siemens Sequoia US. After removing duplicate images and those without biopsy diagnosis or stability over 2 years, there were 298 patients with 394 lesions with biopsy-proven pathology or >2-year follow-up. Raw data were processed using the SA and a new algorithm (NA). Five-millimeter regions of interest were placed in the highest stiffness in the lesion or adjacent 3 mm on the SA. Stiffness values (shear wave speed, max) in this location from both algorithms were recorded. Statistics were calculated for comparing the 2 algorithms. RESULTS: The mean patient age was 56.3 ± 16.1 years (range, 21-93 years). The mean benign lesion size was 10.7 ± 8.0 mm (range, 2-46 mm), whereas the mean malignant lesion size was 14.9 ± 7.8 mm (range, 4-36 mm). There were 201 benign (>2-year follow-up) and 193 biopsied lesions (65 benign; 128 malignant). The mean maximum stiffness for benign lesions was 2.37 m/s (SD 1.26 m/s) for SA and 3.51 m/s (SD 2.05 m/s) for NA. For malignant lesions, the mean maximum stiffness was 4.73 m/s (SD, 1.71 m/s) for SA and 8.45 m/s (SD, 1.42 m/s) for NA. The area under the receiver operating characteristic curve was 0.87 SA and 0.95 NA when using the optimal cutoff value. Using a threshold value of 5.0 m/s for NA and comparing to SA, the sensitivity increased from 0.45 to 1.00 and the specificity decreased from 0.94 to 0.81; the positive predictive value was 0.72, the negative predictive value was 1.00, and the negative likelihood ratio was 0.00. CONCLUSIONS: Using a new breast SWE algorithm significantly improves the sensitivity of the technique with a small decrease in specificity, virtually eliminating the "soft" cancer artifact. The new 2D-SWE algorithm significantly increases the sensitivity and negative predictive value in characterizing breast lesions as benign or malignant and allows for downgrading all BI-RADS 4 lesions.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Diagnóstico por Imagen de Elasticidad/métodos , Mama/diagnóstico por imagen , Mama/patología , Ultrasonografía Mamaria/métodos , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Sensibilidad y Especificidad , Diagnóstico Diferencial
4.
ACS Appl Mater Interfaces ; 15(12): 16288-16298, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36940162

RESUMEN

Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as ß-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [ npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [ Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments.

5.
J Athl Train ; 56(12): 1349-1354, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34911077

RESUMEN

CONTEXT: A National Collegiate Athletic Association Division I female basketball athlete (age = 20 years, height = 190.5 cm, mass = 87 kg) had chronic patellar tendinopathy. INTERVENTION(S): After undergoing unsuccessful conservative treatments, the athlete underwent bilateral open patellar debridement surgery. Pain and dysfunction were assessed via the Victorian Institute of Sport-P (VISA-P) score with concurrently collected B-mode ultrasound images of the patellar tendon throughout a 12-month rehabilitation. RESULTS: Peak spatial frequency radius (PSFR), a quantitative ultrasound measure previously shown to be correlated with collagen organization, was compared with changes in VISA-P scores. Overall increases in PSFR values across 0°, 30°, 60°, and 90° of knee flexion were observed throughout recovery. Despite increased PSFR values and returning to sport, the athlete reported substantial pain. CONCLUSIONS: In this level 3 exploration case report, we provide novel insight into ultrasonically measured structural changes of the patellar tendon after surgery and during rehabilitation of an athlete with chronic tendinopathy. Perceived pain measurements were not necessarily related to structural adaptations.


Asunto(s)
Ligamento Rotuliano , Tendinopatía , Adulto , Atletas , Desbridamiento , Femenino , Humanos , Rótula , Ligamento Rotuliano/diagnóstico por imagen , Ligamento Rotuliano/cirugía , Tendinopatía/diagnóstico por imagen , Ultrasonido , Adulto Joven
6.
J Sci Med Sport ; 22(8): 882-886, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31000456

RESUMEN

OBJECTIVES: Although expected, tendon adaptations in adolescent elite athletes have been underreported. Morphologically, adaptations may occur by an increase in collagen fiber density and/or organization. These characteristics can be captured using spatial frequency parameters extracted from ultrasound images. This study aims to compare Achilles tendon (AT) morphology among sports-specific cohorts of elite adolescent athletes and to compare these findings to recreationally active controls by use of spatial frequency analysis. DESIGN: Cross-sectional observational study. METHOD: In total, 334 healthy adolescent athletes from four sport categories (ball, combat, endurance, explosive strength) and 35 healthy controls were included. Longitudinal ultrasound scans were performed at the AT insertion and midportion. Intra-tendinous-morphology was quantified by performing spatial frequency analysis assessing eight parameters at standardized ROIs. Increased values in five parameters suggest a higher structural organization, and in two parameters higher fiber density. One parameter represents a quotient combining both organization and fiber density. RESULTS: Among athletes, only ball sport athletes exhibited an increase in one summative parameter at pre-insertion site compared to athletes from other sport categories. When compared to athletes, controls had significantly higher values of four parameters at pre-insertion and three parameters at midportion site reflecting differences in both, fiber organization and density. CONCLUSIONS: Intra-tendinous-morphology was similar in all groups of adolescent athletes. Higher values found in non-athletes might suggest higher AT fiber density and organization. It is yet unclear whether the lesser structural organization in young athletes represents initial AT pathology, or a physiological adaptive response at the fiber cross-linking level.


Asunto(s)
Tendón Calcáneo/diagnóstico por imagen , Tendón Calcáneo/fisiología , Adaptación Fisiológica , Atletas , Deportes/fisiología , Ultrasonografía/métodos , Tendón Calcáneo/anatomía & histología , Adolescente , Estudios Transversales , Femenino , Humanos , Masculino
8.
J Biomech ; 57: 136-140, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28410739

RESUMEN

To examine and compare the loading related changes in micro-morphology of the patellar tendon. Fifteen healthy young males (age 19±3yrs, body mass 83±5kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions. Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions. A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading. Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies.


Asunto(s)
Ligamento Rotuliano/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Contracción Isométrica , Articulación de la Rodilla/fisiología , Masculino , Ligamento Rotuliano/diagnóstico por imagen , Estrés Mecánico , Ultrasonografía , Adulto Joven
9.
Artículo en Inglés | MEDLINE | ID: mdl-26670851

RESUMEN

Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given.


Asunto(s)
Módulo de Elasticidad/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Resistencia al Corte/fisiología , Sonido , Simulación por Computador , Diagnóstico por Imagen de Elasticidad/instrumentación , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Estrés Mecánico
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3831-4, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737129

RESUMEN

Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.


Asunto(s)
Ultrasonido/instrumentación , Ultrasonido/métodos , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Ondas de Choque de Alta Energía , Humanos , Modelos Biológicos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA