Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 38(3): 399-409, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691982

RESUMEN

BACKGROUND: The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD). OBJECTIVES: The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. METHODS: Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features. RESULTS: We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling. CONCLUSIONS: A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Metagenoma/genética , Estudios de Cohortes , Microbioma Gastrointestinal/genética , Heces
2.
FASEB J ; 36(1): e22043, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861073

RESUMEN

Circadian misalignment-the misalignment between the central circadian "clock" and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m2 ] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h "days" under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers.


Asunto(s)
Ritmo Circadiano , Microbiota , Boca/microbiología , Saliva/microbiología , Horario de Trabajo por Turnos , Adolescente , Adulto , Femenino , Humanos , Masculino , Prueba de Estudio Conceptual
3.
Neurobiol Dis ; 170: 105780, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35654277

RESUMEN

There is growing appreciation of the importance of the intestinal microbiota in Parkinson's disease (PD), and one potential mechanism by which the intestinal microbiota can communicate with the brain is via bacteria-derived metabolites. In this study, plasma levels of bacterial-derived metabolites including trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA), the branched chain fatty acid isovalerate, succinate, and lactate were evaluated in PD subjects (treatment naïve and treated) which were compared to (1) population controls, (2) spousal / household controls (similar lifestyle to PD subjects), and (3) subjects with multiple system atrophy (MSA). Analyses revealed an increase in the TMAO pathway in PD subjects which was independent of medication status, disease characteristics, and lifestyle. Lactic acid was decreased in treated PD subjects, succinic acid positively correlated with disease severity, and the ratio of pro-inflammatory TMAO to the putative anti-inflammatory metabolite butyric acid was significantly higher in PD subjects compared to controls indicating a pro-inflammatory shift in the metabolite profile in PD subjects. Finally, acetic and butyric acid were different between PD and MSA subjects indicating that metabolites may differentiate these synucleinopathies. In summary, (1) TMAO is elevated in PD subjects, a phenomenon independent of disease characteristics, treatment status, and lifestyle and (2) metabolites may differentiate PD and MSA subjects. Additional studies to understand the potential of TMAO and other bacterial metabolites to serve as a biomarker or therapeutic targets are warranted.


Asunto(s)
Microbioma Gastrointestinal , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Bacterias , Butiratos , Humanos , Estilo de Vida , Enfermedad de Parkinson/terapia
4.
Alcohol Clin Exp Res ; 46(11): 1930-1943, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36394508

RESUMEN

In Dec. 2019-January 2020, a pneumonia illness originating in Wuhan, China, designated as coronavirus disease 2019 (COVID-19) was shown to be caused by a novel RNA coronavirus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). People with advanced age, male sex, and/or underlying health conditions (obesity, type 2 diabetes, cardiovascular disease, hypertension, chronic kidney disease, and chronic lung disease) are especially vulnerable to severe COVID-19 symptoms and death. These risk factors impact the immune system and are also associated with poor health, chronic illness, and shortened longevity. However, a large percent of patients without these known risk factors also develops severe COVID-19 disease that can result in death. Thus, there must exist risk factors that promote exaggerated inflammatory and immune response to the SARS-CoV-2 virus leading to death. One such risk factor may be alcohol misuse and alcohol use disorder because these can exacerbate viral lung infections like SARS, influenza, and pneumonia. Thus, it is highly plausible that alcohol misuse is a risk factor for either increased infection rate when individuals are exposed to SARS-CoV-2 virus and/or more severe COVID-19 in infected patients. Alcohol use is a well-known risk factor for lung diseases and ARDS in SARS patients. We propose that alcohol has three key pathogenic elements in common with other COVID-19 severity risk factors: namely, inflammatory microbiota dysbiosis, leaky gut, and systemic activation of the NLRP3 inflammasome. We also propose that these three elements represent targets for therapy for severe COVID-19.


Asunto(s)
Alcoholismo , COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Alcoholismo/epidemiología , SARS-CoV-2 , Factores de Riesgo , Etanol
5.
Biol Proced Online ; 23(1): 10, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058978

RESUMEN

We investigated nasopharyngeal microbial community structure in COVID-19-positive and -negative patients. High-throughput 16S ribosomal RNA gene amplicon sequencing revealed significant microbial community structure differences between COVID-19-positive and -negative patients. This proof-of-concept study demonstrates that: (1) nasopharyngeal microbiome communities can be assessed using collection samples already collected for SARS-CoV-2 testing (viral transport media) and (2) SARS-CoV-2 infection is associated with altered dysbiotic microbial profiles which could be a biomarker for disease progression and prognosis in SARS-CoV-2.

6.
FASEB J ; 34(11): 14302-14317, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32931052

RESUMEN

Particles released from implants cause inflammatory bone loss, which is a key factor in aseptic loosening, the most common reason for joint replacement failure. With the anticipated increased incidence of total joint replacement in the next decade, implant failure will continue to burden patients. The gut microbiome is increasingly recognized as an important factor in bone physiology, however, its role in implant loosening is currently unknown. We tested the hypothesis that implant loosening is associated with changes in the gut microbiota in a preclinical model. When the particle challenge caused local joint inflammation, decreased peri-implant bone volume, and decreased implant fixation, the gut microbiota was affected. When the particle challenge did not cause this triad of local effects, the gut microbiota was not affected. Our results suggest that cross-talk between these compartments is a previously unrecognized mechanism of failure following total joint replacement.


Asunto(s)
Microbioma Gastrointestinal , Inflamación/patología , Osteólisis/patología , Prótesis e Implantes/efectos adversos , Infecciones Relacionadas con Prótesis/patología , Animales , Inflamación/etiología , Masculino , Osteólisis/etiología , Infecciones Relacionadas con Prótesis/etiología , Ratas
7.
Pediatr Allergy Immunol ; 32(5): 1006-1012, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33570236

RESUMEN

BACKGROUND: Previous studies have shown that a child's risk of developing atopic disease is impacted by both genetic and environmental factors. Because small children spend the majority of their time in their homes, exposure to microbial factors in their home environment may be protective or risk factors for development of atopic diseases, such as atopic dermatitis. METHODS: Dust samples from the homes of 86 Black South African children 12 to 36 months old were collected for analysis of the bacterial microbiome. This case-control study design included children with and without atopic dermatitis from rural and urban environments. RESULTS: Significant differences in bacterial composition and diversity were found when comparing children with and without atopic dermatitis. Furthermore, house dust microbiota was significantly different in rural and urban areas. Differences were best accounted for by higher relative abundance of Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families in rural compared with urban houses. Levels of Ruminococcaceae were also found to be significantly depleted in the house dust of rural children with atopic dermatitis as compared to control children. CONCLUSIONS: House dust composition may be an important risk factor for the development of atopic disease, and this association may be driven in part by the gut microbiome. Low levels of the Ruminococcaceae family from Clostridia class in particular may explain the association between urban living and atopy. However, further research is needed to elucidate these links.


Asunto(s)
Dermatitis Atópica , Microbiota , Estudios de Casos y Controles , Niño , Preescolar , Dermatitis Atópica/epidemiología , Polvo , Humanos , Lactante , Urbanización
8.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810380

RESUMEN

The mechanism underlying the allergy-protective effects of raw cow's milk is still unknown, but the modulation of the gut microbiome may play a role. The effects of consuming raw cow's milk or processed milk on fecal microbial communities were therefore characterized in an experimental murine model. C3H/HeOuJ mice were treated with raw milk, pasteurized milk, skimmed raw milk, pasteurized milk supplemented with alkaline phosphatase (ALP), or phosphate-buffered saline (PBS) for eight days prior to sensitization and challenge with ovalbumin (OVA). Fecal samples were collected after milk exposure and after OVA sensitization, and microbiomes were characterized using 16S ribosomal RNA gene amplicon sequencing. Treatment with raw milk prior to OVA sensitization increased the relative abundance of putative butyrate-producing bacteria from the taxa Lachnospiraceae UCG-001, Lachnospiraceae UCG-008, and Ruminiclostridium 5 (Clostridial clusters XIVa and IV), while it decreased the relative abundance of Proteobacterial genera such as Parasutterella, a putative pro-inflammatory bacterial genus. This effect was observed after eight days of raw milk exposure and became more pronounced five weeks later, after allergic sensitization in the absence of milk. Similar trends were observed after treatment with skimmed raw milk. Conversely, the feeding of pasteurized milk led to a loss of allergy protection and a putative dysbiotic microbiome. The addition of ALP to pasteurized milk restored the protective effect observed with raw milk and mitigated some of the microbial community alterations associated with milk pasteurization. Raw milk-induced protection against food allergic symptoms in mice is accompanied by an increased relative abundance of putative butyrate-producing Clostridiales and a decreased relative abundance of putative pro-inflammatory Proteobacteria. Given the safety concerns regarding raw milk consumption, this knowledge is key for the development of new, microbiologically safe, preventive strategies to reduce the incidence of allergic diseases.


Asunto(s)
Hipersensibilidad a los Alimentos/prevención & control , Microbioma Gastrointestinal , Leche/inmunología , Animales , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/microbiología , Ratones , Leche/microbiología , Pasteurización
9.
Neurobiol Dis ; 144: 105027, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712266

RESUMEN

Inflammation has been linked to the development of nonmotor symptoms in Parkinson's disease (PD), which greatly impact patients' quality of life and can often precede motor symptoms. Suitable animal models are critical for our understanding of the mechanisms underlying disease and the associated prodromal disturbances. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkey model is commonly seen as a "gold standard" model that closely mimics the clinical motor symptoms and the nigrostriatal dopaminergic loss of PD, however MPTP toxicity extends to other nondopaminergic regions. Yet, there are limited reports monitoring the MPTP-induced progressive central and peripheral inflammation as well as other nonmotor symptoms such as gastrointestinal function and microbiota. We report 5 cases of progressive parkinsonism in non-human primates to gain a broader understanding of MPTP-induced central and peripheral inflammatory dysfunction to understand the potential role of inflammation in prodromal/pre-motor features of PD-like degeneration. We measured inflammatory proteins in plasma and CSF and performed [18F]FEPPA PET scans to evaluate translocator proteins (TSPO) or microglial activation. Monkeys were also evaluated for working memory and executive function using various behavior tasks and for gastrointestinal hyperpermeability and microbiota composition. Additionally, monkeys were treated with a novel TNF inhibitor XPro1595 (10 mg/kg, n = 3) or vehicle (n = 2) every three days starting 11 weeks after the initiation of MPTP to determine whether XPro1595 would alter inflammation and microglial behavior in a progressive model of PD. The case studies revealed that earlier and robust [18F]FEPPA PET signals resulted in earlier and more severe parkinsonism, which was seen in male cases compared to female cases. Potential other sex differences were observed in circulating inflammation, microbiota diversity and their metabolites. Additional studies with larger group sizes of both sexes would enable confirmation and extension of these findings. If these findings reflect potential differences in humans, these sex differences have significant implications for therapeutic development of inflammatory targets in the clinic.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Inflamación/metabolismo , Macaca mulatta , Microglía/metabolismo , Trastornos Parkinsonianos/fisiopatología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Anilidas , Animales , Conducta Animal , Cognición/fisiología , Progresión de la Enfermedad , Ácidos Grasos Volátiles/metabolismo , Femenino , Imagen por Resonancia Magnética , Masculino , Microglía/efectos de los fármacos , Microglía/patología , Neurotoxinas , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/microbiología , Tomografía de Emisión de Positrones , Piridinas , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/farmacología
10.
Neurobiol Dis ; 135: 104352, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579705

RESUMEN

Recent evidence provides support for involvement of the microbiota-gut-brain axis in Parkinson's disease (PD) pathogenesis. We propose that a pro-inflammatory intestinal milieu, due to intestinal hyper-permeability and/or microbial dysbiosis, initiates or exacerbates PD pathogenesis. One factor that can cause intestinal hyper-permeability and dysbiosis is chronic stress which has been shown to accelerate neuronal degeneration and motor deficits in Parkinsonism rodent models. We hypothesized that stress-induced intestinal barrier dysfunction and microbial dysbiosis lead to a pro-inflammatory milieu that exacerbates the PD phenotype in the low-dose oral rotenone PD mice model. To test this hypothesis, mice received unpredictable restraint stress (RS) for 12 weeks, and during the last six weeks mice also received a daily administration of low-dose rotenone (10 mg/kg/day) orally. The initial six weeks of RS caused significantly higher urinary cortisol, intestinal hyperpermeability, and decreased abundance of putative "anti-inflammatory" bacteria (Lactobacillus) compared to non-stressed mice. Rotenone alone (i.e., without RS) disrupted the colonic expression of the tight junction protein ZO-1, increased oxidative stress (N-tyrosine), increased myenteric plexus enteric glial cell GFAP expression and increased α-synuclein (α-syn) protein levels in the colon compared to controls. Restraint stress exacerbated these rotenone-induced changes. Specifically, RS potentiated rotenone-induced effects in the colon including: 1) intestinal hyper-permeability, 2) disruption of tight junction proteins (ZO-1, Occludin, Claudin1), 3) oxidative stress (N-tyrosine), 4) inflammation in glial cells (GFAP + enteric glia cells), 5) α-syn, 6) increased relative abundance of fecal Akkermansia (mucin-degrading Gram-negative bacteria), and 7) endotoxemia. In addition, RS promoted a number of rotenone-induced effects in the brain including: 1) reduced number of resting microglia and a higher number of dystrophic/phagocytic microglia as well as (FJ-C+) dying cells in the substantia nigra (SN), 2) increased lipopolysaccharide (LPS) reactivity in the SN, and 3) reduced dopamine (DA) and DA metabolites (DOPAC, HVA) in the striatum compared to control mice. Our findings support a model in which chronic stress-induced, gut-derived, pro-inflammatory milieu exacerbates the PD phenotype via a dysfunctional microbiota-gut-brain axis.


Asunto(s)
Enfermedades Gastrointestinales/complicaciones , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad de Parkinson/patología , Rotenona/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/inducido químicamente , Humanos , Enfermedad de Parkinson/complicaciones
11.
Gut ; 68(5): 829-843, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30554160

RESUMEN

OBJECTIVE: Recent evidence suggesting an important role of gut-derived inflammation in brain disorders has opened up new directions to explore the possible role of the gut-brain axis in neurodegenerative diseases. Given the prominence of dysbiosis and colonic dysfunction in patients with Parkinson's disease (PD), we propose that toll-like receptor 4 (TLR4)-mediated intestinal dysfunction could contribute to intestinal and central inflammation in PD-related neurodegeneration. DESIGN: To test this hypothesis we performed studies in both human tissue and a murine model of PD. Inflammation, immune activation and microbiota composition were measured in colonic samples from subjects with PD and healthy controls subjects and rotenone or vehicle-treated mice. To further assess the role of the TLR4 signalling in PD-induced neuroinflammation, we used TLR4-knockout (KO) mice in conjunction with oral rotenone administration to model PD. RESULTS: Patients with PD have intestinal barrier disruption, enhanced markers of microbial translocation and higher pro-inflammatory gene profiles in the colonic biopsy samples compared with controls. In this regard, we found increased expression of the bacterial endotoxin-specific ligand TLR4, CD3+ T cells, cytokine expression in colonic biopsies, dysbiosis characterised by a decrease abundance of SCFA-producing colonic bacteria in subjects with PD. Rotenone treatment in TLR4-KO mice revealed less intestinal inflammation, intestinal and motor dysfunction, neuroinflammation and neurodegeneration, relative to rotenone-treated wild-type animals despite the presence of dysbiotic microbiota in TLR4-KO mice. CONCLUSION: Taken together, these studies suggest that TLR4-mediated inflammation plays an important role in intestinal and/or brain inflammation, which may be one of the key factors leading to neurodegeneration in PD.


Asunto(s)
Colon/patología , Enfermedad de Parkinson/etiología , Receptor Toll-Like 4/fisiología , Animales , Complejo CD3/metabolismo , Estudios de Casos y Controles , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Disbiosis/etiología , Disbiosis/metabolismo , Disbiosis/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
12.
BMC Microbiol ; 19(1): 145, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253096

RESUMEN

BACKGROUND: Fecal samples are currently the most commonly studied proxy for gut microbiota. The gold standard of sample handling and storage for microbiota analysis is maintaining the cold chain during sample transfer and immediate storage at - 80 °C. Gut microbiota studies in large-scale, population-based cohorts require a feasible sample collection protocol. We compared the effect of three different storage methods and mock shipment: immediate freezing at - 80 °C, in 95% ethanol stored at room temperature (RT) for 48 h, and on blood collection card stored at RT for 48 h, on the measured composition of fecal microbiota of eight healthy, female volunteers by sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq. RESULTS: Shared operational taxonomic units (OTUs) between different methods were 68 and 3% for OTUs > 0.01 and < 0.01% mean relative abundance within each group, respectively. α and ß-diversity measures were not significantly impacted by different storage methods. With the exception of Actinobacteria, fecal microbiota profiles at the phylum level were not significantly affected by the storage method. Actinobacteria was significantly higher in samples collected on card compared to immediate freezing (1.6 ± 1.1% vs. 0.4 ± 0.2%, p = 0.005) mainly driven by expansion of Actinobacteria relative abundance in fecal samples stored on card in two individuals. There was no statistically significant difference at lower taxonomic levels tested. CONCLUSION: Consistent results of the microbiota composition and structure for different storage methods were observed. Fecal collection on card could be a suitable alternative to immediate freezing for fecal microbiota analysis using 16S rRNA gene amplicon sequencing.


Asunto(s)
Biodiversidad , Heces/microbiología , Microbioma Gastrointestinal , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Bacterias/clasificación , Bacterias/genética , Estudios de Cohortes , Femenino , Congelación , Microbioma Gastrointestinal/genética , Humanos , Proyectos Piloto , ARN Ribosómico 16S/genética
13.
J Nutr ; 149(5): 856-869, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31050747

RESUMEN

BACKGROUND: A critical role for host-microbe interactions and establishment of vaccine responses has been postulated. Human milk oligosaccharides, of which 2'-fucosyllactose (2'FL) is the most prevalent, are known to alter host-associated microbial communities and play a critical role in the immunologic development of breastfed infants. OBJECTIVES: Dietary supplementation with a combination of 2'FL and prebiotic short-chain (sc) galacto-oligosaccharides (GOS) and long-chain (lc) fructo-oligosaccharides (FOS) was employed to examine human milk oligosaccharide effects on immune responsiveness, within a murine influenza vaccination model. METHODS: Female mice (6 wk old, C57Bl/6JOlaHsd) were fed either control diet (CON) or scGOS/lcFOS/2'FL-containing diet (GF2F) for 45 d. After starting dietary intervention (day 14), mice received a primary influenza vaccination (day 0) followed by a booster vaccination (day 21), after which ear challenges were conducted to measure vaccine-specific delayed type hypersensitivity (DTH). Serum immunoglobulin (Ig) levels, fecal and cecal microbial community structure, short-chain fatty acids, host intestinal gene expression and cellular responses in the mesenteric lymph nodes (MLNs) were also measured. RESULTS: Relative to CON, mice fed the GF2F diet had increased influenza vaccine-specific DTH responses (79.3%; P < 0.01), higher levels of both IgG1 (3.2-fold; P < 0.05) and IgG2a (1.2-fold; P < 0.05) in serum, and greater percentages of activated B cells (0.3%; P < 0.05), regulatory T cells (1.64%; P < 0.05), and T-helper 1 cells (2.2%; P < 0.05) in their MLNs. GF2F-fed mice had elevated cecal butyric (P < 0.05) and propionic (P < 0.05) acid levels relative to CON, which correlated to DTH responses (R2 = 0.22; P = 0.05 and R2 = 0.39; P < 0.01, respectively). Specific fecal microbial taxa altered in GF2F diet fed mice relative to CON were significantly correlated with the DTH response and IgG2a level increases. CONCLUSIONS: Dietary GF2F improved influenza vaccine-specific T-helper 1 responses and B cell activation in MLNs and enhanced systemic IgG1 and IgG2a concentrations in mice. These immunologic changes are correlated with microbial community structure and metabolites.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana/prevención & control , Leche Humana/química , Membrana Mucosa/efectos de los fármacos , Oligosacáridos/uso terapéutico , Prebióticos , Trisacáridos/uso terapéutico , Animales , Linfocitos B , Ciego/metabolismo , Ciego/microbiología , Colon/metabolismo , Colon/microbiología , Heces/microbiología , Femenino , Fructosa/farmacología , Fructosa/uso terapéutico , Galactosa/farmacología , Galactosa/uso terapéutico , Humanos , Inmunoglobulina G/sangre , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Gripe Humana/inmunología , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Oligosacáridos/farmacología , Células TH1 , Trisacáridos/farmacología , Vacunación
14.
FASEB J ; 32(4): 2060-2072, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29233857

RESUMEN

The composition of the diet (what we eat) has been widely related to the microbiota profile. However, whether the timing of food consumption (when we eat) influences microbiota in humans is unknown. A randomized, crossover study was performed in 10 healthy normal-weight young women to test the effect of the timing of food intake on the human microbiota in the saliva and fecal samples. More specifically, to determine whether eating late alters daily rhythms of human salivary microbiota, we interrogated salivary microbiota in samples obtained at 4 specific time points over 24 h, to achieve a better understanding of the relationship between food timing and metabolic alterations in humans. Results revealed significant diurnal rhythms in salivary diversity and bacterial relative abundance ( i.e., TM7 and Fusobacteria) across both early and late eating conditions. More importantly, meal timing affected diurnal rhythms in diversity of salivary microbiota toward an inverted rhythm between the eating conditions, and eating late increased the number of putative proinflammatory taxa, showing a diurnal rhythm in the saliva. In a randomized, crossover study, we showed for the first time the impact of the timing of food intake on human salivary microbiota. Eating the main meal late inverts the daily rhythm of salivary microbiota diversity which may have a deleterious effect on the metabolism of the host.-Collado, M. C., Engen, P. A., Bandín, C., Cabrera-Rubio, R., Voigt, R. M., Green, S. J., Naqib, A., Keshavarzian, A., Scheer, F. A. J. L., Garaulet, M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.


Asunto(s)
Ritmo Circadiano , Ingestión de Alimentos , Microbiota , Saliva/microbiología , Adulto , Femenino , Humanos
15.
Physiol Genomics ; 49(9): 473-483, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28710295

RESUMEN

FUT2 is a gene for a fucosyltransferase that encodes expression of ABO blood group antigens found on gastrointestinal mucosa and secretions. We hypothesized that the fecal microbiomes of healthy subjects, with blood group antigens A, B, and O, have differing compositions. We analyzed 33 fecal and blood specimens from healthy subjects for FUT2 genotype, and the fecal microbiome was determined by 454 pyrosequencing. Our data show that being a blood group secretor is associated with less diversity at higher orders of taxonomy; and the presence of blood group A antigens in the secretor subjects are associated with an expansion families of bacteria within the gut. Furthermore, our study confirms the previous findings that secretors and nonsecretors have differing bacterial taxa. This extends the previous findings by demonstrating that the impact of being a nonsecretor is higher than that of individual blood group antigens. Additionally, we demonstrate that both secretor status and blood group antigen expression especially affect the Lachnospiraceae family of bacteria within the gut microbiome, with lower abundances noted in nonsecretors and higher abundances in secretors of various blood groups. We further note specific differences in blood group A-secretors demonstrating that the genus Blautia is lower in the group A-secretors compared with the non-A-secretors and that this reduction is accompanied by higher abundances of members of the Rikenellaceae, Peptostreptococcaceae, Clostridiales, and Turicibacter This study offers a first insight into the relationship between the fecal microbiome and blood group antigens in secretors.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Microbioma Gastrointestinal , Adulto , Anciano , Bacterias/clasificación , Biodiversidad , Demografía , Análisis Discriminante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia
17.
PLoS Pathog ; 10(2): e1003829, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586144

RESUMEN

HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , ARN Ribosómico 16S/análisis , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microbiota , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Alcohol Clin Exp Res ; 40(2): 335-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26842252

RESUMEN

BACKGROUND: Circadian rhythm disruption is a prevalent feature of modern day society that is associated with an increase in pro-inflammatory diseases, and there is a clear need for a better understanding of the mechanism(s) underlying this phenomenon. We have previously demonstrated that both environmental and genetic circadian rhythm disruption causes intestinal hyperpermeability and exacerbates alcohol-induced intestinal hyperpermeability and liver pathology. The intestinal microbiota can influence intestinal barrier integrity and impact immune system function; thus, in this study, we sought to determine whether genetic alteration of the core circadian clock gene, Clock, altered the intestinal microbiota community. METHODS: Male Clock(Δ19) -mutant mice (mice homozygous for a dominant-negative-mutant allele) or littermate wild-type mice were fed 1 of 3 experimental diets: (i) a standard chow diet, (ii) an alcohol-containing diet, or (iii) an alcohol-control diet in which the alcohol calories were replaced with dextrose. Stool microbiota was assessed with 16S ribosomal RNA gene amplicon sequencing. RESULTS: The fecal microbial community of Clock-mutant mice had lower taxonomic diversity, relative to wild-type mice, and the Clock(Δ19) mutation was associated with intestinal dysbiosis when mice were fed either the alcohol-containing or the control diet. We found that alcohol consumption significantly altered the intestinal microbiota in both wild-type and Clock-mutant mice. CONCLUSIONS: Our data support a model by which circadian rhythm disruption by the Clock(Δ19) mutation perturbs normal intestinal microbial communities, and this trend was exacerbated in the context of a secondary dietary intestinal stressor.


Asunto(s)
Relojes Circadianos/genética , Disbiosis/genética , Microbioma Gastrointestinal , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Relojes Circadianos/fisiología , Disbiosis/fisiopatología , Etanol/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , ARN Ribosómico 16S
19.
J Pediatr Gastroenterol Nutr ; 62(2): 292-303, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26230901

RESUMEN

OBJECTIVES: The aim of the present study was to examine the changes in bacteria in hospitalized preterm infants during the first month of life. METHODS: Rectal swabs were collected daily from 12 preterm infants. DNA was extracted from swabs from day of birth and weekly thereafter. Bacterial taxa were identified with next generation sequencing using universal bacterial primers targeted at the 16S ribosomal DNA on a 454 Roche titanium platform. Sequences were clustered into operational taxonomic units, and taxonomy was assigned against the Greengenes databank using Quantitative Insights Into Microbial Ecology version 1.4. Quantitative polymerase chain reaction was used to determine the abundance of Bifidobacterium spp. Functional assessment of the microbiome was performed with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). RESULTS: Average birth weight and gestational age were 1055 g and 28 weeks, respectively. There were 6 to 35 different bacterial families identified in the day-of-birth samples, unrelated to the mode of delivery. Richness decreased through hospitalization (week 1, 16.9 ±â€Š7.7 vs weeks 3-5, 10.7 ±â€Š3.4, P < 0.001). The Shannon diversity index demonstrated the lowest diversity at birth, an increase at week 2, followed by a rapid decline at weeks 3 to 5, suggesting the development of a more uniform microbiota composition after 2 weeks of stay at a neonatal intensive care unit. Enterobacteriaceae, Staphylococcaceae, and Enterococcaceae constituted the majority of the bacterial families. Bifidobacterium spp were infrequently detected at extremely low levels. PICRUSt analysis revealed the enhancement of peroxisome, PPAR, and adipocytokine signaling; plant-pathogen interaction; and aminobenzoate degradation pathways in week 1 samples. CONCLUSIONS: Our results suggest that although preterm infants have individualized microbiota that are detectable at birth, the differences decrease during the neonatal intensive care unit hospitalization with increasing prominence of pathogenic microbiota.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Hospitalización , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Unidades de Cuidado Intensivo Neonatal , Peso al Nacer , ADN Bacteriano/análisis , Heces/microbiología , Femenino , Edad Gestacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Filogenia , ARN Ribosómico 16S
20.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918452

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption-another modern life style habit-in promoting alcohol-associated CRC. METHOD: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. RESULTS: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. CONCLUSIONS: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.


Asunto(s)
Alcoholismo/complicaciones , Carcinogénesis/patología , Neoplasias Colorrectales/etiología , Inflamación/patología , Intestinos/microbiología , Intestinos/patología , Microbiota , Fotoperiodo , Animales , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Disbiosis/complicaciones , Disbiosis/microbiología , Disbiosis/patología , Células Epiteliales/patología , Conducta Alimentaria , Mastocitos/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA