RESUMEN
Hazelnut oil cake (HOC) has the potential to be bioactive component source. Therefore, HOC was processed with a solid-state fermentation (SSF) by Aspergillus oryzae with two steps optimization: Plackett-Burman and Box-Behnken design. The variables were the initial moisture content (X1: 30-50%), incubation temperature (X2: 26-37 °C), and time (X3: 3-5 days), and the response was total peptide content (TPC). The fermented HOC (FHOC) was darker with higher protein, oil, and ash but lower carbohydrate content than HOC. The FHOC had 6.1% more essential amino acid and benzaldehyde comprised 48.8% of determined volatile compounds. Fermentation provided 14 times higher TPC (462.37 mg tryptone/g) and higher phenolic content as 3.5, 48, and 7 times in aqueous, methanolic, and 80% aqueous methanolic extract in FHOC, respectively. FHOC showed higher antioxidant as ABTS+ (75.61 µmol Trolox/g), DPPH (14.09 µmol Trolox/g), and OH (265 mg ascorbic acid/g) radical scavenging, and α-glucosidase inhibition, whereas HOC had more angiotensin converting enzyme inhibition. HOC showed better water absorption while FHOC had better oil absorption activity. Both cakes had similar foaming and emulsifying activity; however, FHOC produced more stable foams and emulsions. SSF at lab-scale yielded more bioactive component with better functionality in FHOC.
Asunto(s)
Antioxidantes , Aspergillus oryzae , Corylus , Fermentación , Aceites de Plantas , Aspergillus oryzae/metabolismo , Corylus/química , Antioxidantes/farmacología , Antioxidantes/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Fenoles/químicaRESUMEN
In this Research Communication we describe the optimisation of spray drying conditions in the production of microencapsulated cream powder. Oil-in-water emulsions were prepared using maltodextrin (18 DE) and sodium caseinate as wall materials (with the total wall material per total solid content ratio of 30%) and then converted into powder by spray drying. Response surface methodology was used to optimise the factors of spray drying system i.e. inlet drying temperature, feed flow rate, and aspiration rate, where the levels were in the range of 150-190°C, 9-30 ml/min, and 50-100%, respectively. Our objective was to perform spray drying with the highest drying yield and to obtain a microencapsulated cream powder with the highest bulk density, the shortest wetting time, and the lowest surface fat content. The calculated and validated optimum conditions for the spray drying process were found to be 162.8°C for inlet drying temperature, 11.51 ml/min for feed flow rate, and 72.8% for aspiration rate. At these optimum conditions, drying yield, bulk density, wettability, and surface fat content values were 36.37%, 269.9 kg/m3, 115.2 s and 26.2%, respectively.
Asunto(s)
Productos Lácteos , Manipulación de Alimentos , Leche , Animales , Bovinos , Desecación/métodos , Polvos , Secado por PulverizaciónRESUMEN
There is an increasing demand for cheese as a food ingredient, especially as a flavoring agent. One of the most important cheese flavoring agents is cheese powder. To obtain an intense cheese flavor, ripened cheese is used as a raw material in cheese powder but this increases production costs. Moreover, use of natural cheese decreases the physical quality of powder because of its high fat content. In this study, we evaluated opportunities to use whey or maltodextrin for improving the physical quality of powders in production of white cheese powder. We produced cheese powders with 3 different formulations-control (CON), whey-added (WACP), and maltodextrin-added (MACP)-and determined the effects of formulation on cheese powder quality. Physical quality parameters such as color, densities, reconstitution properties, free fat content, particle morphology, and sensory characteristics were investigated. The different cheese powders were stored for 12 mo at 20°C and we evaluated the effect of storage on powder quality. Addition of maltodextrin to cheese powder formulations significantly improved their physical quality. The densities and reconstitution properties of cheese powder were increased and free fat content was decreased by use of maltodextrin. The MACP particles were spherical with a uniform distribution and larger particle sizes, whereas CON and WACP particles were wrinkled, irregular shaped with deep surface dents, and variable in size. Although caking was observed in scanning electron micrographs after 12 mo of storage, it was not detected by sensory panelists. The color of cheese powders changed very slowly during storage but browning was detected. The results of this study show that it is possible to use maltodextrin or whey in production of white cheese powder to reduce production costs and improve the physical quality of powders.
Asunto(s)
Queso/análisis , Manipulación de Alimentos/métodos , Conservación de Alimentos , Alimentos en Conserva/análisis , Polisacáridos/administración & dosificación , Suero Lácteo/administración & dosificación , Animales , Color , Aromatizantes/análisis , Calidad de los Alimentos , Tamaño de la PartículaRESUMEN
Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.
Asunto(s)
Queso/análisis , Polvos , Animales , Color , Desecación/métodos , Aromatizantes/análisis , Análisis de los Alimentos , Almacenamiento de Alimentos , Calor , Solubilidad , Gusto , Temperatura , AguaRESUMEN
Antep cheese is a local Turkish cheese characterized by scalding during production and ripened in brine. In this study, Antep cheeses were produced using mixtures of different milk types (cow, sheep, and goat milk) and ripened for 5 months. The composition, proteolytic ripening extension index (REI), free fatty acid (FFA) content, and volatile compounds of the cheeses and the variation of the brines were analyzed for the 5-month ripening period. Low proteolytic activity in cheese during ripening caused the cheeses to have low REI values (3.92%-7.57%), although it was observed that some parts of the water-soluble nitrogen fractions diffused into the brine, causing a lower REI. As a result of lipolysis during ripening, total FFA (TFFA) concentrations in all cheeses were increased, whereas the highest increases were detected in the concentrations of short-chain FFAs. The highest FFA concentrations were determined in cheese produced using goat milk, and the volatile FFA ratio in TFFA exceeded 10% in the third month of ripening. Although it was observed that the milk types used in the production had significant effects on the change of volatile compounds of the produced cheeses and their brines, the impact of the ripening time was more important. PRACTICAL APPLICATION: This study investigated Antep cheese made with different milk types. Volatile compounds and soluble nitrogen fractions were transferred to the brine by diffusion during ripening. The volatile profile of the cheese varied with milk type, but ripening time was the primary factor influencing volatile compounds. This suggests that the targeted organoleptic properties of the cheese are determined by ripening time and conditions. Additionally, changes in the brine's composition during the ripening process provide insight into how to manage the brine as waste.
Asunto(s)
Queso , Leche , Femenino , Bovinos , Animales , Ovinos , Leche/química , Manipulación de Alimentos , Queso/análisis , Ácidos Grasos no Esterificados/análisis , Péptido Hidrolasas , Sensación , Nitrógeno/análisis , CabrasRESUMEN
In this study, the effects of coating quince slices with CaCl2 and pectin (C + P) followed by drying with microwave (MWD-C + P) or with hot air (HAD-C + P) were investigated to determine the physicochemical, techno-functional, textural, and volatile components of dried quince slices. A Taguchi orthogonal experimental design was set up with 18 points (L18 ), and the best conditions for drying were obtained using signal/noise ratio method. Coating quince slices with C + P and then drying with microwave at 450 W displayed the higher results compared to other points in terms of color, total phenolic, antioxidant activity, antimicrobial activity, and water holding capacity. MWD-C + P application dramatically changed the textural properties of dried quince slices in terms of hardness, gumminess, and chewiness. Moreover, MWD, lasted 12-15 min, was superior to HAD in the context of drying time. Ultrasonication as a pretreatment had no positive impact on dried products. GC-MS analyses revealed that MWD-C + P had positive effects on dried quince slices in terms of ethyl hexanoate and octanoic acid. However, MWD-C + P application triggered the formation of furfural in dried products.
Asunto(s)
Pectinas , Rosaceae , Pectinas/química , Rosaceae/química , Microondas , Antioxidantes/farmacología , SemillasRESUMEN
This study investigated the potential bioactive properties of white cheeses produced in different regions of Turkey, including their potential antioxidant, antihypertensive, antidiabetic, antimicrobial, and anticancer activities. The cheese samples were analyzed both before and after in vitro digestion. The study found that all cheese samples exhibited significant angiotensin-converting enzyme inhibition activity both before (45.5%-70.1% for 0.03 g cheese/mL) and after in vitro digestion (25.5%-63.5% for 0.0167 g cheese/mL), whereas α-amylase inhibition activity was present in all samples (in the range of 5.1%-50.0% for 3.0 × 10-5 g cheese/mL) but disappeared after digestion, and α-glucosidase inhibition activity was only detected after in vitro digestion (from 20.5% to 60.4% for 5.6 × 10-5 g cheese/mL), indicating potential antidiabetic properties. However, antimicrobial and anticancer activities were not observed in any of the samples. The results also suggest that the bioactivity potential of white cheese may vary depending on the region of production, as cheeses from the Marmara region exhibited high α-glucosidase inhibition activity after digestion. In conclusion, while white cheese is a valuable addition to the diet due to its high nutritional value and potential health benefits. This study revealed the bioactive potential of ripened white cheese and in vivo investigations of the cheese components would better show their possible benefits. PRACTICAL APPLICATION: Although the bioactivity potentials varied among the ripened white cheese samples produced in different regions of Turkey, a consistent trend was observed in terms of their presence or absence. Our research revealed that all ripened cheese samples demonstrated significant potential antioxidant and antihypertensive activities, as well as potential antidiabetic properties. Moreover, it can be interpreted that ripened white cheese has the potential to reduce the digestion of carbohydrates when consumed with carbohydrate-rich foods. Although the present results provide limited practical findings directly applicable to the industry, if the data and information obtained from this study are further explored and further studies delving into specific mechanisms of bioactive components could emerge.
Asunto(s)
Antiinfecciosos , Queso , Antioxidantes/farmacología , Turquía , Antihipertensivos , alfa-Glucosidasas , Hipoglucemiantes/farmacologíaRESUMEN
Enzyme-modified cheese (EMC), a cheese flavor additive with high-fat content, is preferably produced in powder form because of its long shelf-life and high industrial applicability. The physical properties of additives, especially with high-fat contents, are very important for their industrial usage, and the spray drying process conditions substantially determine the physical properties of powders. In this study, optimization of the spray drying process during the production of EMC powder was performed to improve the powder physical properties. The process factors were inlet temperature, feed flow rate, and aspiration rate, while the responses were selected as drying yield, Carr index (CI), wettability, surface fat content, and browning index (BI). The optimum spray drying conditions were calculated as 150°C, 9.1 mL/min, and 28.4 m3 /h for inlet temperature, feed flow rate, and aspiration rate, respectively. It has been determined that the spray drying conditions at low inlet temperature, medium feed flow, and aspiration rates in order to obtain improved powder physical properties should be preferred. Practical Application: Enzyme-modified cheese (EMC) is a widely used product in the development of foods with cheese flavor, and EMC in powder form offers various advantages for industrial applications such as ease in storage and transportation, long shelf-life, and product applicability, which mainly depend on powder physical properties. In powder production, spray drying is the principle process determining the powder physical properties, and optimization is essential for the desired physical properties. In this study, laboratory-scale optimization of EMC powder production was carried out, data was provided for scale-up studies, and the effects of processing conditions on powder physical properties were evaluated.
Asunto(s)
Queso , Secado por Pulverización , Polvos , Queso/análisis , Temperatura , DesecaciónRESUMEN
Drying is a complicated process with simultaneous heat and mass transfer, and food drying is especially very complex because of the differential structure of products. In practice, a food dryer is considerably more complex than a device that merely removes moisture, and effective models are necessary for process design, optimization, energy integration, and control. Although modeling studies in food drying are important, there is no theoretical model which neither is practical nor can it unify the calculations. Therefore the experimental studies prevent their importance in drying and thin layer drying equations are important tools in mathematical modeling of food drying. They are practical and give sufficiently good results. In this study first, the theory of drying was given briefly. Next, general modeling approaches for food drying were explained. Then, commonly used or newly developed thin layer drying equations were shown, and determination of the appropriate model was explained. Afterwards, effective moisture diffusivity and activation energy calculations were expressed. Finally, experimental studies conducted in the last 10 years were reviewed, tabulated, and discussed. It is expected that this comprehensive study will be beneficial to those involved or interested in modeling, design, optimization, and analysis of food drying.