Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Ther ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385467

RESUMEN

Inherited retinal diseases (IRDs) are characterized by progressive vision loss. There are over 270 causative IRD genes, and variants within the same gene can cause clinically distinct disorders. One example is RLBP1, which encodes CRALBP. CRALBP is an essential protein in the rod and cone visual cycles that take place primarily in the retinal pigment epithelium (RPE) but also in Müller cells of the neuroretina. RLBP1 variants lead to three clinical subtypes: Bothnia dystrophy, retinitis punctata albescens, and Newfoundland rod-cone dystrophy. We modeled RLBP1-IRD subtypes using patient-specific induced pluripotent stem cell (iPSC)-derived RPE and identified pathophysiological markers that served as pertinent therapeutic read-outs. We developed an AAV2/5-mediated gene-supplementation strategy and performed a proof-of-concept study in the human models, which was validated in vivo in an Rlbp1-/- murine model. Most importantly, we identified a previously unsuspected smaller CRALBP isoform that is naturally and differentially expressed both in the human and murine retina. This previously unidentified isoform is produced from an alternative methionine initiation site. This work provides further insights into CRALBP expression and RLBP1-associated pathophysiology and raises important considerations for successful gene-supplementation therapy.

2.
FASEB J ; 35(4): e21406, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33724552

RESUMEN

Human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) is a powerful tool for pathophysiological studies and preclinical therapeutic screening, as well as a source for clinical cell transplantation. Thus, it must be validated for maturity and functionality to ensure correct data readouts and clinical safety. Previous studies have validated hiPSC-derived RPE as morphologically characteristic of the tissue in the human eye. However, information concerning the expression and functionality of ion channels is still limited. We screened hiPSC-derived RPE for the polarized expression of a panel of L-type (CaV 1.1, CaV 1.3) and T-type (CaV 3.1, CaV 3.3) Ca2+ channels, K+ channels (Maxi-K, Kir4.1, Kir7.1), and the Cl- channel ClC-2 known to be expressed in native RPE. We also tested the roles of these channels in key RPE functions using specific inhibitors. In addition to confirming the native expression profiles and function of certain channels, such as L-type Ca2+ channels, we show for the first time that T-type Ca2+ channels play a role in both phagocytosis and vascular endothelial growth factor (VEGF) secretion. Moreover, we demonstrate that Maxi-K and Kir7.1 channels are involved in the polarized secretion of VEGF and pigment epithelium-derived factor (PEDF). Furthermore, we show a novel localization for ClC-2 channel on the apical side of hiPSC-derived RPE, with an overexpression at the level of fluid-filled domes, and demonstrate that it plays an important role in phagocytosis, as well as VEGF and PEDF secretion. Taken together, hiPSC-derived RPE is a powerful model for advancing fundamental knowledge of RPE functions.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Canales de Cloruro/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Canales de Potasio/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Canales de Calcio Tipo T/genética , Diferenciación Celular , Canales de Cloruro/genética , Regulación de la Expresión Génica , Humanos , Canales de Potasio/genética
3.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807610

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genes Dominantes/genética , Mutación/genética , Retinitis Pigmentosa/genética , Alelos , Animales , Secuencia de Bases , Células COS , Línea Celular , Chlorocebus aethiops , Edición Génica/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Receptores Nucleares Huérfanos/genética , Retina/fisiología
4.
Hum Mutat ; 40(1): 31-35, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30341801

RESUMEN

Choroideremia is a monogenic X-linked recessive chorioretinal disease linked to pathogenic variants in the CHM gene. These variants are commonly base-pair changes, frameshifts, or large deletions. However, a few rare or unusual events comprising large duplications, a retrotransposon insertion, a pseudo-exon activation, and two c-98 promoter substitutions have also been described. Following an exhaustive molecular diagnosis, we identified and characterized three novel atypical disease-causing variants in three unrelated male patients. One is a first-ever reported Alu insertion within CHM and the other two are nucleotide substitutions, c.-90C>G and c.-108A>G, affecting highly conserved promoter positions. RNA analysis combined with western blot and functional assays of patient cells established the pathogenicity of the Alu insertion and the c.-90C>G alteration. Furthermore, luciferase reporter assays suggested a CHM transcription defect associated with the c.-90C>G and c.-108A>G variants. These findings broaden our knowledge of the mutational spectrum and the transcriptional regulation of the CHM gene.


Asunto(s)
Coroideremia/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Elementos Alu/genética , Secuencia de Bases , Exones/genética , Humanos , Regiones Promotoras Genéticas/genética
5.
Hum Mol Genet ; 26(18): 3573-3584, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911202

RESUMEN

Choroideremia (CHM) is an inherited retinal dystrophy characterised by progressive degeneration of photoreceptors, retinal pigment epithelium (RPE) and underlying choroid. It is caused by loss-of-function mutations in CHM, which has an X-linked inheritance, and is thus an ideal candidate for gene replacement strategies. CHM encodes REP1, which plays a key role in the prenylation of Rab GTPases. We recently showed that an induced pluripotent stem cell (iPSc)-derived RPE model for CHM is fully functional and reproduces the underlying prenylation defect. This criterion can thus be used for testing the pathogenic nature of novel variants. Until recently, missense variants were not associated with CHM. Currently, at least nine such variants have been reported but only two have been shown to be pathogenic. We report here the characterisation of the third pathogenic missense CHM variant, p.Leu457Pro. Clinically, the associated phenotype is indistinguishable from that of loss-of-function mutations. By contrast, this missense variant results in wild type CHM expression levels and detectable levels of mutant protein. The prenylation status of patient-specific fibroblasts and iPSc-derived RPE is within the range observed for loss-of-function mutations, consistent with the clinical phenotype. Lastly, considering the current climate of CHM gene therapy, we assayed whether the presence of mutant REP1 could interfere with a gene replacement strategy by testing the prenylation status of patient-specific iPSc-derived RPE following AAV-mediated gene transfer. Our results show that correction of the functional defect is possible and highlight the predictive value of these models for therapy screening prior to inclusion in clinical trials.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Coroideremia/genética , Coroides/metabolismo , Coroideremia/terapia , Fibroblastos/metabolismo , Genes Ligados a X/genética , Terapia Genética/métodos , Humanos , Células Madre Pluripotentes Inducidas , Mutación , Mutación Missense/genética , Linaje , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Unión al GTP rab/metabolismo
8.
HGG Adv ; 4(4): 100229, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37654703

RESUMEN

There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Retinitis Pigmentosa/diagnóstico , Organoides , Fenotipo , Proteínas de la Matriz Extracelular/genética
9.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37768732

RESUMEN

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Retina , Retinitis Pigmentosa/genética , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina , Proteínas Adaptadoras Transductoras de Señales
10.
Methods Mol Biol ; 2454: 589-606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33755901

RESUMEN

The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) was developed in 2006 and represented a major breakthrough in stem cell research. A more recent milestone in biomedical research was reached in 2013 when the CRISPR/Cas9 system was used to edit the genome of mammalian cells. The coupling of both human (h)iPSCs and CRISPR/Cas9 technology offers great promise for cell therapy and regenerative medicine. However, several limitations including time and labor consumption, efficiency and efficacy of the system, and the potential off-targets effects induced by the Cas9 nuclease still need to be addressed. Here, we describe a detailed method for easily engineering genetic changes in hiPSCs, using a nucleofection-mediated protocol to deliver the CRISPR/Cas9 components into the cells, and discuss key points to be considered when designing your experiment. The clonal, genome-edited hiPSC line generated via our method can be directly used for downstream applications.


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Edición Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos/genética
11.
Stem Cell Res ; 60: 102738, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248879

RESUMEN

We report here the generation of the human iPSC line INMi005-A from a patient with non-syndromic autosomal recessive retinitis pigmentosa caused by compound heterozygous mutations in the USH2A gene. The reprogramming of primary human dermal fibroblasts was performed using the non-integrative Sendai virus method and the OSKM transcription factor cocktail. The generated INMi005-A iPSC line is pluripotent and genetically stable, and will represent a valuable tool for understanding the pathophysiology associated with USH2A mutations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Síndromes de Usher , Proteínas de la Matriz Extracelular/genética , Humanos , Mutación/genética , Retinitis Pigmentosa/genética , Síndromes de Usher/genética
12.
Stem Cell Res Ther ; 13(1): 478, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114559

RESUMEN

BACKGROUND: Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS: A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS: Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS: This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Humanos , Organoides/metabolismo , Retina/metabolismo , Tretinoina/farmacología
13.
Mol Ther Methods Clin Dev ; 17: 156-173, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31909088

RESUMEN

Inherited retinal dystrophies (IRDs) are characterized by progressive photoreceptor degeneration and vision loss. Usher syndrome (USH) is a syndromic IRD characterized by retinitis pigmentosa (RP) and hearing loss. USH is clinically and genetically heterogeneous, and the most prevalent causative gene is USH2A. USH2A mutations also account for a large number of isolated autosomal recessive RP (arRP) cases. This high prevalence is due to two recurrent USH2A mutations, c.2276G>T and c.2299delG. Due to the large size of the USH2A cDNA, gene augmentation therapy is inaccessible. However, CRISPR/Cas9-mediated genome editing is a viable alternative. We used enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP. Our results highlight features that promote high target efficacy and specificity of eSpCas9. Consistently, we did not identify any off-target mutagenesis in the corrected iPSCs, which also retained pluripotency and genetic stability. Furthermore, analysis of USH2A expression unexpectedly identified aberrant mRNA levels associated with the c.2276G>T and c.2299delG mutations that were reverted following correction. Taken together, our efficient CRISPR/Cas9-mediated strategy for USH2A mutation correction brings hope for a potential treatment for USH and arRP patients.

14.
PLoS Negl Trop Dis ; 14(4): e0008223, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324736

RESUMEN

Usutu virus (USUV), an African mosquito-borne flavivirus closely related to West Nile virus, was first isolated in South Africa in 1959. USUV emerged in Europe two decades ago, causing notably massive mortality in Eurasian blackbirds. USUV is attracting increasing attention due to its potential for emergence and its rapid spread in Europe in recent years. Although mainly asymptomatic or responsible for mild clinical signs, USUV was recently described as being associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting the potential health threat posed by the virus. Despite this, USUV pathogenesis remains largely unexplored. The aim of this study was to evaluate USUV neuropathogenicity using in vivo and in vitro approaches. Our results indicate that USUV efficiently replicates in the murine central nervous system. Replication in the spinal cord and brain is associated with recruitment of inflammatory cells and the release of inflammatory molecules as well as induction of antiviral-responses without major modulation of blood-brain barrier integrity. Endothelial cells integrity is also maintained in a human model of the blood-brain barrier despite USUV replication and release of pro-inflammatory cytokines. Furthermore, USUV-inoculated mice developed major ocular defects associated with inflammation. Moreover, USUV efficiently replicates in human retinal pigment epithelium. Our results will help to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.


Asunto(s)
Flavivirus/patogenicidad , Modelos Biológicos , Sistema Nervioso/virología , Animales , Encéfalo/virología , Modelos Animales de Enfermedad , Células Endoteliales/virología , Células Epiteliales/virología , Flavivirus/crecimiento & desarrollo , Humanos , Ratones , Epitelio Pigmentado Ocular/virología , Médula Espinal/virología
15.
Stem Cell Res ; 38: 101476, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31247521

RESUMEN

The human induced pluripotent stem cell (iPSC) line, INMi004-A, was generated using dermal fibroblasts from a 6 year-old patient with autosomal dominant Leber Congenital Amaurosis (LCA) caused by the point mutation c.695delC (p.Pro232Argfs*139) in the CRX gene. We used non-integrative Sendai virus vectors containing the human OSKM transcription factor cocktail to reprogram patient fibroblasts. The generated iPSC line contained the congenital deletion c.695delC in exon 4 of CRX, had a normal karyotype, and was capable of differentiation into all three germ layers. This cell line represents an important tool to study the pathophysiology of CRX-associated LCA.


Asunto(s)
Secuencia de Bases , Fibroblastos , Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas , Amaurosis Congénita de Leber , Mutación Puntual , Eliminación de Secuencia , Transactivadores , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Transactivadores/genética , Transactivadores/metabolismo
16.
Stem Cell Res ; 38: 101478, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203166

RESUMEN

We generated an induced pluripotent stem cell (iPSC) line using dermal fibroblasts from a 53 year-old patient with autosomal dominant cone-rod dystrophy (CRD) caused by a missense mutation, c.121C > T, in the CRX gene. Patient fibroblasts were reprogrammed using the non-integrative Sendai virus reprogramming system and the human OSKM transcription factor cocktail. The generated iPSCs contained the congenital mutation in exon 3 of CRX and were pluripotent and genetically stable. This iPSC line will be an important tool for retinal differentiation studies to better understand the CRD phenotype caused by the mutant p.Arg41Trp CRX protein.


Asunto(s)
Técnicas de Reprogramación Celular , Distrofias de Conos y Bastones , Fibroblastos/metabolismo , Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas/metabolismo , Mutación Missense , Transactivadores , Sustitución de Aminoácidos , Línea Celular , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/metabolismo , Distrofias de Conos y Bastones/patología , Fibroblastos/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Transactivadores/genética , Transactivadores/metabolismo
17.
EBioMedicine ; 39: 315-331, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30579862

RESUMEN

BACKGROUND: Zika virus (ZIKV) has recently re-emerged as a pathogenic agent with epidemic capacities as was well illustrated in South America. Because of the extent of this health crisis, a number of more serious symptoms have become associated with ZIKV infection than what was initially described. In particular, neuronal and ocular disorders have been characterized, both in infants and in adults. Notably, the macula and the retina can be strongly affected by ZIKV, possibly by a direct effect of the virus. This is supported by the detection of replicative and infectious virus in lachrimal fluid in human patients and mouse models. METHODS: Here, we used an innovative, state-of-the-art iPSC-derived human retinal pigment epithelium (RPE) model to study ZIKV retinal impairment. FINDINGS: We showed that the human RPE is highly susceptible to ZIKV infection and that a ZIKV African strain was more virulent and led to a more potent epithelium disruption and stronger anti-viral response than an Asian strain, suggesting lineage differences. Moreover, ZIKV infection led to impaired membrane dynamics involved in endocytosis, organelle biogenesis and potentially secretion, key mechanisms of RPE homeostasis and function. INTERPRETATION: Taken together, our results suggest that ZIKV has a highly efficient ocular tropism, which creates a strong inflammatory environment that could have acute or chronic adverse effects. FUND: This work was funded by Retina France, REACTing and La Région Languedoc-Roussillon.


Asunto(s)
Interferones/metabolismo , Epitelio Pigmentado de la Retina/virología , Infección por el Virus Zika/inmunología , Virus Zika/patogenicidad , Células Cultivadas , Homeostasis , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/virología , Interferones/genética , Modelos Biológicos , Fagocitosis , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/inmunología , Tropismo Viral , Replicación Viral , Virus Zika/clasificación , Virus Zika/fisiología , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
18.
Cells ; 8(9)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514470

RESUMEN

Induced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members.


Asunto(s)
Coroideremia/genética , Células Madre Pluripotentes Inducidas/patología , Distrofias Retinianas/genética , Translocación Genética/genética , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 20/genética , Cromosomas Humanos Par 5/genética , Humanos , Cariotipo , Hermanos
19.
Stem Cell Res ; 33: 247-250, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30468996

RESUMEN

We generated an induced pluripotent stem cell (iPSC) line using dermal fibroblasts from a patient with Usher syndrome type 2 (USH2). This individual was homozygous for the most prevalent variant reported in the USH2A gene, c.2299delG localized in exon 13. Reprogramming was performed using the non-integrative Sendai virus reprogramming method and the human OSKM transcription factor cocktail under feeder-free culture conditions. This iPSC line will be an invaluable tool for studying the pathophysiology of USH2 and for testing the efficacy of novel treatments.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Síndromes de Usher/genética , Femenino , Humanos , Persona de Mediana Edad
20.
Stem Cell Res ; 33: 228-232, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30453153

RESUMEN

We generated an induced pluripotent stem cell (iPSC) line from a patient with non-syndromic retinitis pigmentosa who is a compound heterozygote for the two most frequent USH2A variants, c.2276G > T and c.2299delG localized in exon 13. Patient fibroblasts were reprogrammed using the non-integrative Sendai virus reprogramming method and the human OSKM transcription factor cocktail. The generated cells were pluripotent and genetically stable. This iPSC line will be an important tool for studying the pathogenesis of these USH2A mutations and for developing treatments that, due their high prevalence, will target a large patient population.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Anciano , Femenino , Heterocigoto , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA