RESUMEN
INTRODUCTION: Oncologic patients who develop chemotherapy-associated liver injury (CALI) secondary to chemotherapy treatment tend to have worse outcomes. Biopsy remains the gold standard for the diagnosis of hepatic steatosis. The purpose of this article is to compare 2 alternatives: Proton-Density-Fat-Fraction (PDFF) MRI and MultiMaterial-Decomposition (MMD) DECT. MATERIALS AND METHODS: 49 consecutive oncologic patients treated with Chemotherapy underwent abdominal DECT and abdominal MRI within 2 weeks of each other. Two radiologists tracked Regions of Interest independently both in the PDFF fat maps and in the MMD DECT fat maps. Non-parametric exact Wilcoxon signed rank test and Cohen's K were used to compare the 2 sequences and to evaluate the agreement. RESULTS: There was no statistically significant difference in the fat fraction measured as a continuous value between PDFF and DECT between 2 readers. Within the same imaging method (PDFF) the degree of agreement based on the k coefficient between reader 1 and reader 2 is 0.88 (p-value < 0.05). Similarly, for single-source DECT(ssDECT) the degree of agreement based on the k coefficient between reader 1 and reader 2 is 0.97 (p-value < 0.05). CONCLUSIONS: The results of this study demonstrate that the hepatic fat fraction of ssDECT with MMD are not significantly different from PDFF. This could be an advantage in an oncological population that undergoes serial CT scans for follow up of chemotherapy response.
RESUMEN
Despite steady advances in medical care, cardiovascular disease remains one of the main causes of death and long-term morbidity worldwide. Up to 30% of strokes are associated with the presence of carotid atherosclerotic plaques. While the degree of stenosis has long been recognized as the main guiding factor in risk stratification and therapeutical decisions, recent evidence suggests that features of unstable, or 'vulnerable', plaques offer better prognostication capabilities. This paradigmatic shift has motivated researchers to explore the potentialities of non-invasive diagnostic tools to image not only the lumen, but also the vascular wall and the structural characteristics of the plaque. The present review will offer a panoramic on the imaging modalities currently available to characterize carotid atherosclerotic plaques and, in particular, it will focus on the increasingly important role covered by multidetector computed tomographic angiography.