Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cancer Metastasis Rev ; 43(1): 457-479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227149

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-ß, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/fisiología , Neoplasias/metabolismo , Transducción de Señal , Fenotipo , Resistencia a Medicamentos , Línea Celular Tumoral , Microambiente Tumoral
2.
Small ; 20(26): e2308479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38385813

RESUMEN

Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.


Asunto(s)
Agujas , Humanos , Sistemas de Liberación de Medicamentos , Animales , Nanomedicina Teranóstica , Microinyecciones/instrumentación , Microinyecciones/métodos
3.
J Transl Med ; 22(1): 970, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39465365

RESUMEN

Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.


Asunto(s)
Neoplasias Gastrointestinales , Hidrogeles , Humanos , Hidrogeles/uso terapéutico , Hidrogeles/química , Neoplasias Gastrointestinales/terapia , Nanomedicina Teranóstica/métodos , Animales , Sistemas de Liberación de Medicamentos , Inmunoterapia/métodos
4.
Langmuir ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967248

RESUMEN

Colloidal crystals and their two-dimensional (2D) monolayers, which have been commonly applied in nanosphere lithography, have the potential to revolutionize many engineering disciplines; however, current production techniques are hampered by a restricted preparation area, laborious procedures, and the need for advanced equipment. We propose a self-assembly-driven, simple, and low-cost method to prepare 2D colloidal nanosphere monolayers with excellent repeatability across wide regions. The self-assembly capability of colloidal polystyrene (PS) nanospheres at the air/water interface was utilized to transfer the assembled monolayers onto a substrate. This innovative method combines the advantages of methods that permit deposition at the air/water interface, such as Langmuir and drop coating, in order to deliver defect-free, simple-to-install, and simple-to-apply deposition across vast regions. Using field emission scanning electron microscopy and atomic force microscopy, the resultant coatings were characterized. The size of the nanospheres was reduced using an oxygen plasma etch process in an inductively coupled plasma reactive ion etching system, and the reflectance properties of the substrates for various nanosphere sizes were investigated. By evaporation of a thin gold capping layer on the templates, their optical properties were compared using surface-enhanced Raman scattering spectroscopy. This work has the potential to expand the use of nanosphere lithography by offering a simple and reproducible method that eliminates the need for complicated experimental setups and reduces the amount of material required for monolayer coating, thus lowering the cost.

5.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
6.
Environ Res ; 227: 115722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948284

RESUMEN

Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.


Asunto(s)
Doxorrubicina , Micelas , Humanos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Concentración de Iones de Hidrógeno
7.
Environ Res ; 228: 115912, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068723

RESUMEN

Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.


Asunto(s)
Quitosano , Diabetes Mellitus , Nanopartículas , Nanoestructuras , Humanos , Quitosano/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/química , Polímeros/química , Insulina , Diabetes Mellitus/tratamiento farmacológico
8.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
9.
Pharmacol Res ; 186: 106535, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334877

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a process that involves the transformation of polarized epithelial cells to attain a mesenchymal phenotype that presents an elevated migratory potential, invasiveness, and antiapoptotic properties. Many studies have demonstrated that EMT is a prominent event that is associated with embryogenesis, tumor progression, metastasis, and therapeutic resistance. The EMT process is driven by key transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and several long non-coding RNAs (lncRNAs) in many non-pathological as well as pathological conditions. In the present report, we have comprehensively discussed the oncogenic and tumor suppressor role of lncRNAs and their mechanism of action in the regulation of the EMT process in various cancers such as brain tumors, gastrointestinal tumors, and gynecological and urological tumors. We have also elaborated on the role of lncRNAs in the regulation of EMT-related transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and therapeutic response (chemoresistance and radioresistance). Lastly, we have emphasized the role of exosomal lncRNAs in the regulation of EMT, metastasis, and therapeutic response in the aforementioned cancers. Taken together, this review provides a detailed insight into the understanding of role of lncRNAs/exosomal lncRNAs in EMT, metastasis, and therapeutic response in human cancers.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/genética , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica
11.
ACS Appl Mater Interfaces ; 16(13): 15718-15729, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506616

RESUMEN

Surgical removal of tumor tissue remains the primary clinical approach for addressing breast cancer; however, complete tumor excision is challenging, and the remaining tumor cells can lead to tumor recurrence and metastasis over time, which substantially deteriorates the life quality of the patients. With the aim to improve local cancer radiotherapy, this work reports the fabrication of alginate (Alg) scaffolds containing bovine serum albumin (BSA)-coated bismuth sulfide (Bi2S3@BSA) nanoradiosensitizers using three-dimensional (3D) printing. Under single-dose X-ray irradiation in vitro, Alg-Bi2S3@BSA scaffolds significantly increase the formation of reactive oxygen species, enhance the inhibition of breast cancer cells, and suppress their colony formation capacity. In addition, scaffolds implanted under tumor tissue in murine model show high therapeutic efficacy by reducing the tumor volume growth rate under single-dose X-ray irradiation, while histological observation of main organs reveals no cytotoxicity or side effects. 3D-printed Alg-Bi2S3@BSA scaffolds produced with biocompatible and biodegradable materials may potentially lower the recurrence and metastasis rates in breast cancer patients by inhibiting residual tumor cells following postsurgery as well as exhibit anticancer properties in other solid tumors.


Asunto(s)
Bismuto , Neoplasias de la Mama , Nanopartículas , Sulfuros , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Alginatos , Andamios del Tejido , Impresión Tridimensional , Ingeniería de Tejidos
12.
Cancer Lett ; 591: 216857, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583648

RESUMEN

The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.


Asunto(s)
Autofagia , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Animales , Helicobacter pylori
13.
J Nutr Biochem ; 130: 109647, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38604457

RESUMEN

Macrophages are phagocytic cells with important physiological functions, including the digestion of cellular debris, foreign substances, and microbes, as well as tissue development and homeostasis. The tumor microenvironment (TME) shapes the aggressiveness of cancer, and the biological and cellular interactions in this complicated space can determine carcinogenesis. TME can determine the progression, biological behavior, and therapy resistance of human cancers. The macrophages are among the most abundant cells in the TME, and their functions and secretions can determine tumor progression. The education of macrophages to M2 polarization can accelerate cancer progression, and therefore, the re-education and reprogramming of these cells is promising. Moreover, macrophages can cause inflammation in aggravating pathological events, including cardiovascular diseases, diabetes, and neurological disorders. The natural products are pleiotropic and broad-spectrum functional compounds that have been deployed as ideal alternatives to conventional drugs in the treatment of cancer. The biological and cellular interactions in the TME can be regulated by natural products, and for this purpose, they enhance the M1 polarization of macrophages, and in addition to inhibiting proliferation and invasion, they impair the chemoresistance. Moreover, since macrophages and changes in the molecular pathways in these cells can cause inflammation, the natural products impair the pro-inflammatory function of macrophages to prevent the pathogenesis and progression of diseases. Even a reduction in macrophage-mediated inflammation can prevent organ fibrosis. Therefore, natural product-mediated macrophage targeting can alleviate both cancerous and non-cancerous diseases.


Asunto(s)
Productos Biológicos , Inflamación , Macrófagos , Neoplasias , Microambiente Tumoral , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Dieta
14.
Drug Discov Today ; 29(7): 103981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614161

RESUMEN

The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Péptidos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Péptidos/química , Péptidos/administración & dosificación , Péptidos/uso terapéutico , Animales , Microambiente Tumoral , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos
15.
ACS Appl Bio Mater ; 7(5): 2637-2659, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38687958

RESUMEN

Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.


Asunto(s)
Membrana Celular , Células Asesinas Naturales , Nanopartículas , Neoplasias , Linfocitos T , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Membrana Celular/química , Virosis/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tamaño de la Partícula , Ensayo de Materiales , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico
16.
Cancer Lett ; 591: 216860, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583650

RESUMEN

Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.


Asunto(s)
Autofagia , Nanoestructuras , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas , Resistencia a Antineoplásicos , Animales
17.
ACS Appl Bio Mater ; 7(8): 5740-5753, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39110486

RESUMEN

The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.


Asunto(s)
Aptámeros de Nucleótidos , Bombyx , Oro , Nanopartículas del Metal , Tamaño de la Partícula , Bombyx/microbiología , Oro/química , Animales , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Pseudomonas/aislamiento & purificación , Ensayo de Materiales , Materiales Biocompatibles/química , Farmacorresistencia Bacteriana Múltiple , Técnicas Biosensibles , Sistemas de Atención de Punto
18.
ACS Omega ; 9(17): 19627-19636, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708264

RESUMEN

Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.

19.
Int J Biol Macromol ; 273(Pt 1): 132579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795895

RESUMEN

Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.


Asunto(s)
Quitosano , Terapia Genética , Ácido Hialurónico , Inmunoterapia , Neoplasias , Fototerapia , Ácido Hialurónico/química , Humanos , Quitosano/química , Neoplasias/terapia , Inmunoterapia/métodos , Terapia Genética/métodos , Fototerapia/métodos , Animales , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Terapia Combinada , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanopartículas/química
20.
Cancer Lett ; 591: 216867, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593919

RESUMEN

Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.


Asunto(s)
Autofagia , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Nanopartículas , Apoptosis/efectos de los fármacos , Animales , Ferroptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA