Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(11): e3002367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37967106

RESUMEN

In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.


Asunto(s)
Dióxido de Carbono , Colesterol , Animales , Colesterol/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 71(6): 879-881, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241604

RESUMEN

Data on the perceptions of scientists suggest a moderate public distrust of scientist's motivations. Bettridge et al. suggest scientist's reluctance to engage the public on controversial ethical issues may be a contributing factor. The authors propose a Scientist's Oath to send a clear message to the public about our ideals.


Asunto(s)
Personal de Laboratorio/ética , Códigos de Ética , Ética en Investigación , Humanos , Investigación , Confianza
3.
Drug Metab Dispos ; 52(4): 288-295, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38331874

RESUMEN

Gemcitabine (dFdC) and emtricitabine (FTC) are first-line drugs that are used for the treatment of pancreatic cancer and human immunodeficiency virus, respectively. The above drugs must undergo sequential phosphorylation to become pharmacologically active. Interindividual variability associated with the responses of the above drugs has been reported. The molecular mechanisms underlying the observed variability are yet to be elucidated. Although this could be multifactorial, nucleotidases may be involved in the dephosphorylation of drug metabolites due to their structural similarity to endogenous nucleosides. With these in mind, we performed in vitro assays using recombinant nucleotidases to assess their enzymatic activities toward the metabolites of dFdC and FTC. From the above in vitro experiments, we noticed the dephosphorylation of dFdC-monophosphate in the presence of two 5'-nucleotidases (5'-NTs), cytosolic 5'-nucleotidase IA (NT5C1A) and cytosolic 5'-nucleotidase III (NT5C3), individually. Interestingly, FTC monophosphate was dephosphorylated only in the presence of NT5C3 enzyme. Additionally, nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) exhibited enzymatic activity toward both triphosphate metabolites of dFdC and FTC. Enzyme kinetic analysis further revealed Michaelis-Menten kinetics for both NT5C3-mediated dephosphorylation of monophosphate metabolites, as well as NTPDase 1-mediated dephosphorylation of triphosphate metabolites. Immunoblotting results confirmed the presence of NT5C3 and NTPDase 1 in both pancreatic and colorectal tissue that are target sites for dFdC and FTC treatment, respectively. Furthermore, sex-specific expression patterns of NT5C3 and NTPDase 1 were determined using mass spectrometry-based proteomics approach. Based on the above results, NT5C3 and NTPDase 1 may function in the control of the levels of dFdC and FTC metabolites. SIGNIFICANCE STATEMENT: Emtricitabine and gemcitabine are commonly used drugs for the treatment of human immunodeficiency virus and pancreatic cancer. To become pharmacologically active, both the above drugs must be phosphorylated. The variability in the responses of the above drugs can lead to poor clinical outcomes. Although the sources of drug metabolite concentration variability are multifactorial, it is vital to understand the role of nucleotidases in the tissue disposition of the above drug metabolites due to their structural similarities to endogenous nucleosides.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Polifosfatos , Femenino , Humanos , Masculino , 5'-Nucleotidasa/metabolismo , Desoxicitidina , Emtricitabina/química , Emtricitabina/metabolismo , Cinética , Nucleotidasas/metabolismo , Nucleótidos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo
4.
J Biol Chem ; 297(5): 101316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34678314

RESUMEN

Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone. The extent of PGRMC1 function in cytochrome P450 biology and whether PGRMC1 is also a heme chaperone are unknown. Here, we examined the function of Pgrmc1 in mouse liver using a knockout model and found that Pgrmc1 binds and stabilizes a broad range of cytochromes P450 in a heme-independent manner. Proteomic and transcriptomic studies demonstrated that Pgrmc1 binds more than 13 cytochromes P450 and supports maintenance of cytochrome P450 protein levels posttranscriptionally. In vitro assays confirmed that Pgrmc1 KO livers exhibit reduced cytochrome P450 activity consistent with reduced enzyme levels. Mechanistic studies in cultured cells demonstrated that PGRMC1 stabilizes cytochromes P450 and that binding and stabilization do not require PGRMC1 binding to heme. Importantly, Pgrmc1-dependent stabilization of cytochromes P450 is physiologically relevant, as Pgrmc1 deletion protected mice from acetaminophen-induced liver injury. Finally, evaluation of Y113F mutant Pgrmc1, which lacks the axial heme iron-coordinating hydroxyl group, revealed that proper iron coordination is not required for heme binding, but is required for binding to ferrochelatase, the final enzyme in heme biosynthesis. PGRMC1 was recently identified as the causative mutation in X-linked isolated pediatric cataract formation. Together, these results demonstrate a heme-independent function for PGRMC1 in cytochrome P450 stability that may underlie clinical phenotypes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Sustitución de Aminoácidos , Animales , Sistema Enzimático del Citocromo P-450/genética , Estabilidad de Enzimas , Células HeLa , Hemo/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación Missense , Receptores de Progesterona/genética
5.
J Biol Chem ; 295(52): 18284-18300, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33109611

RESUMEN

Oxygen regulates hypoxia-inducible factor (HIF) transcription factors to control cell metabolism, erythrogenesis, and angiogenesis. Whereas much has been elucidated about how oxygen regulates HIF, whether lipids affect HIF activity is un-known. Here, using cultured cells and two animal models, we demonstrate that lipoprotein-derived fatty acids are an independent regulator of HIF. Decreasing extracellular lipid supply inhibited HIF prolyl hydroxylation, leading to accumulation of the HIFα subunit of these heterodimeric transcription factors comparable with hypoxia with activation of downstream target genes. The addition of fatty acids to culture medium suppressed this signal, which required an intact mitochondrial respiratory chain. Mechanistically, fatty acids and oxygen are distinct signals integrated to control HIF activity. Finally, we observed lipid signaling to HIF and changes in target gene expression in developing zebrafish and adult mice, and this pathway operates in cancer cells from a range of tissues. This study identifies fatty acids as a physiological modulator of HIF, defining a mechanism for lipoprotein regulation that functions in parallel to oxygen.


Asunto(s)
Ácidos Grasos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipoproteínas/química , Oxígeno/metabolismo , Animales , Perfilación de la Expresión Génica , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lipoproteínas/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Pez Cebra
6.
Semin Cell Dev Biol ; 81: 110-120, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28851600

RESUMEN

Low oxygen adaptation is essential for aerobic fungi that must survive in varied oxygen environments. Pathogenic fungi in particular must adapt to the low oxygen host tissue environment in order to cause infection. Maintenance of lipid homeostasis is especially important for cell growth and proliferation, and is a highly oxygen-dependent process. In this review, we focus on recent advances in our understanding of the transcriptional regulation and coordination of the low oxygen response across fungal species, paying particular attention to pathogenic fungi. Comparison of lipid homeostasis pathways in these organisms suggests common mechanisms of transcriptional regulation and points toward untapped potential to target low oxygen adaptation in antifungal development.


Asunto(s)
Hongos/genética , Regulación Fúngica de la Expresión Génica , Homeostasis/genética , Metabolismo de los Lípidos/genética , Oxígeno/metabolismo , Antifúngicos/farmacología , Desarrollo de Medicamentos , Hongos/efectos de los fármacos
7.
EMBO J ; 35(21): 2332-2349, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27655872

RESUMEN

Hypoxic growth of fungi requires sterol regulatory element-binding protein (SREBP) transcription factors, and human opportunistic fungal pathogens require SREBP activation for virulence. Proteolytic release of fission yeast SREBPs from the membrane in response to low oxygen requires the Golgi membrane-anchored Dsc E3 ligase complex. Using genetic interaction arrays, we identified Rbd2 as a rhomboid family protease required for SREBP proteolytic processing. Rbd2 is an active, Golgi-localized protease that cleaves the transmembrane segment of the TatA rhomboid model substrate. Epistasis analysis revealed that the Dsc E3 ligase acts on SREBP prior to cleavage by Rbd2. Using APEX2 proximity biotinylation, we demonstrated that Rbd2 binds the AAA-ATPase Cdc48 through a C-terminal SHP box. Interestingly, SREBP cleavage required Rbd2 binding of Cdc48, consistent with Cdc48 acting to recruit ubiquitinylated substrates. In support of this claim, overexpressing a Cdc48-binding mutant of Rbd2 bypassed the Cdc48 requirement for SREBP cleavage, demonstrating that Cdc48 likely plays a role in SREBP recognition. In the absence of functional Rbd2, SREBP precursor is degraded by the proteasome, indicating that Rbd2 activity controls the balance between SREBP activation and degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células HEK293 , Humanos , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
8.
Mol Cell ; 46(5): 691-704, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681890

RESUMEN

To date, cross-species comparisons of genetic interactomes have been restricted to small or functionally related gene sets, limiting our ability to infer evolutionary trends. To facilitate a more comprehensive analysis, we constructed a genome-scale epistasis map (E-MAP) for the fission yeast Schizosaccharomyces pombe, providing phenotypic signatures for ~60% of the nonessential genome. Using these signatures, we generated a catalog of 297 functional modules, and we assigned function to 144 previously uncharacterized genes, including mRNA splicing and DNA damage checkpoint factors. Comparison with an integrated genetic interactome from the budding yeast Saccharomyces cerevisiae revealed a hierarchical model for the evolution of genetic interactions, with conservation highest within protein complexes, lower within biological processes, and lowest between distinct biological processes. Despite the large evolutionary distance and extensive rewiring of individual interactions, both networks retain conserved features and display similar levels of functional crosstalk between biological processes, suggesting general design principles of genetic interactomes.


Asunto(s)
Epistasis Genética , Evolución Molecular , Genes Fúngicos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Fúngico , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Especificidad de la Especie
9.
Mol Cell ; 44(2): 225-34, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017871

RESUMEN

Regulation of gene expression plays an integral role in adaptation of cells to hypoxic stress. In mammals, prolyl hydroxylases control levels of the central transcription factor hypoxia inducible factor (HIF) through regulation of HIFα subunit stability. Here, we report that the hydroxylase Ofd1 regulates the Sre1 hypoxic transcription factor in fission yeast by controlling DNA binding. Prolyl hydroxylases require oxygen as a substrate, and the activity of Ofd1 regulates Sre1-dependent transcription. In the presence of oxygen, Ofd1 binds the Sre1 N-terminal transcription factor domain (Sre1N) and inhibits Sre1-dependent transcription by blocking DNA binding. In the absence of oxygen, the inhibitor Nro1 binds Ofd1, thereby releasing Sre1N and leading to activation of genes required for hypoxic growth. In contrast to the HIF system, where proline hydroxylation is essential for regulation, Ofd1 inhibition of Sre1N does not require hydroxylation and, thus, defines a new mechanism for hypoxic gene regulation.


Asunto(s)
Oxígeno/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Sitios de Unión , Hipoxia de la Célula/fisiología , ADN de Hongos/metabolismo , Hidroxilación , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Mol Cell ; 42(2): 160-71, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504829

RESUMEN

Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Aparato de Golgi/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Ciclo Celular/genética , Endopeptidasas/metabolismo , Complejos Multiproteicos , Proproteína Convertasas/metabolismo , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Serina Endopeptidasas/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
11.
J Biol Chem ; 292(13): 5311-5324, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28202541

RESUMEN

The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/química , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/deficiencia , Regulación Fúngica de la Expresión Génica , Metabolismo de los Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/biosíntesis , Factores de Transcripción/genética
12.
J Biol Chem ; 292(39): 16333-16350, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28821619

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA+) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe, generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Eliminación de Gen , Glicosilación , Aparato de Golgi/enzimología , Inmunoprecipitación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Proteína que Contiene Valosina
13.
J Biol Chem ; 291(23): 12171-83, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27053105

RESUMEN

Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1.


Asunto(s)
Metabolismo de los Lípidos , Oxígeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transactivadores/metabolismo , Anaerobiosis , Animales , División Celular/efectos de los fármacos , División Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , Glicerofosfolípidos/metabolismo , Homeostasis , Mutación , Ácido Oléico/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Transactivadores/genética , Triglicéridos/metabolismo
14.
Biochem J ; 473(16): 2463-9, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27274088

RESUMEN

The engineered ascorbate peroxidase (APEX2) has been effectively employed in mammalian cells to identify protein-protein interactions. APEX2 fused to a protein of interest covalently tags nearby proteins with biotin-phenol (BP) when H2O2 is added to the cell culture medium. Subsequent affinity purification of biotinylated proteins allows for identification by MS. BP labelling occurs in 1 min, providing temporal control of labelling. The APEX2 tool enables proteomic mapping of subcellular compartments as well as identification of dynamic protein complexes, and has emerged as a new methodology for proteomic analysis. Despite these advantages, a related APEX2 approach has not been developed for yeast. Here we report methods to enable APEX2-mediated biotin labelling in yeast. Our work demonstrated that high osmolarity and disruption of cell wall integrity permits live-cell biotin labelling in Schizosaccharomyces pombe and Saccharomyces cerevisiae respectively. Under these conditions, APEX2 permitted targeted and proximity-dependent labelling of proteins. The methods described herein set the stage for large-scale proteomic studies in yeast. With modifications, the method is also expected to be effective in other organisms with cell walls, such as bacteria and plants.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Biotina/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Fracciones Subcelulares/enzimología
15.
Genes Dev ; 23(22): 2578-91, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933148

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) are a subfamily of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors that are conserved from fungi to humans and are defined by two key features: a signature tyrosine residue in the DNA-binding domain, and a membrane-tethering domain that is a target for regulated proteolysis. Recent studies including genome-wide and model organism approaches indicate SREBPs coordinate cellular lipid metabolism with other cellular physiologic processes. These functions are broadly related as cellular adaptation to environmental changes ranging from nutrient fluctuations to toxin exposure. This review integrates classic features of the SREBP pathway with newer information regarding the regulation and sensing mechanisms that serve to assimilate different cellular physiologic processes for optimal function and growth.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Regulación de la Expresión Génica , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Modelos Animales , Oxígeno/metabolismo , Filogenia , Schizosaccharomyces/metabolismo
16.
J Lipid Res ; 57(8): 1564-73, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27324795

RESUMEN

Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipid homeostasis and activate expression of genes required for fatty acid, triglyceride, and cholesterol synthesis and uptake. SREBP cleavage activating protein (SCAP) plays an essential role in SREBP activation by mediating endoplasmic reticulum (ER)-to-Golgi transport of SREBP. In the Golgi, membrane-bound SREBPs are cleaved sequentially by the site-1 and site-2 proteases. Recent studies have shown a requirement for the SREBP pathway in the development of fatty liver disease and tumor growth, making SCAP a target for drug development. Fatostatin is a chemical inhibitor of the SREBP pathway that directly binds SCAP and blocks its ER-to-Golgi transport. In this study, we determined that fatostatin blocks ER exit of SCAP and showed that inhibition is independent of insulin-induced gene proteins, which function to retain the SCAP-SREBP complex in the ER. Fatostatin potently inhibited cell growth, but unexpectedly exogenous lipids failed to rescue proliferation of fatostatin-treated cells. Furthermore, fatostatin inhibited growth of cells lacking SCAP Using a vesicular stomatitis virus glycoprotein (VSVG) trafficking assay, we demonstrated that fatostatin delays ER-to-Golgi transport of VSVG. In summary, fatostatin inhibited SREBP activation, but fatostatin additionally inhibited cell proliferation through both lipid-independent and SCAP-independent mechanisms, possibly by general inhibition of ER-to-Golgi transport.


Asunto(s)
Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Piridinas/farmacología , Tiazoles/farmacología , Animales , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Transporte de Proteínas/efectos de los fármacos
17.
J Biol Chem ; 290(23): 14430-40, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25918164

RESUMEN

Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/análisis , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteolisis , Proteínas de Saccharomyces cerevisiae/análisis , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/análisis , Ubiquitina-Proteína Ligasas/análisis
18.
Mol Cell Proteomics ; 13(11): 2871-82, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25078903

RESUMEN

Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in protein homeostasis under non-stress conditions and support a role in protein quality control. This quantitative diGly proteomics methodology will serve as a robust platform for screening for stress conditions that require Tul1 E3 ligase activity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Desmocolinas/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Aparato de Golgi/metabolismo , Marcaje Isotópico , Estructura Terciaria de Proteína , Proteómica , Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
19.
J Biol Chem ; 289(11): 7547-57, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24478315

RESUMEN

Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipogenesis. Release of membrane-bound SREBP requires SREBP cleavage-activating protein (SCAP) to escort SREBP from the endoplasmic reticulum (ER) to the Golgi for cleavage by site-1 and site-2 proteases. SCAP then recycles to the ER for additional rounds of SREBP binding and transport. Mechanisms regulating ER-to-Golgi transport of SCAP-SREBP are understood in molecular detail, but little is known about SCAP recycling. Here, we have demonstrated that SCAP Golgi-to-ER transport requires cleavage of SREBP at site-1. Reductions in SREBP cleavage lead to SCAP degradation in lysosomes, providing additional negative feedback control to the SREBP pathway. Current models suggest that SREBP plays a passive role prior to cleavage. However, we show that SREBP actively prevents premature recycling of SCAP-SREBP until initiation of SREBP cleavage. SREBP regulates SCAP in human cells and yeast, indicating that this is an ancient regulatory mechanism.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos/química , Proteínas de la Membrana/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Células CHO , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Cricetulus , Vectores Genéticos , Células HEK293 , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Unión Proteica , Schizosaccharomyces/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo
20.
J Biol Chem ; 289(5): 2725-35, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24327658

RESUMEN

Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/metabolismo , Quinasa de la Caseína I/genética , Regulación Fúngica de la Expresión Génica/fisiología , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Oxígeno/metabolismo , Fosforilación/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA