Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Planta ; 257(6): 105, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37120771

RESUMEN

MAIN CONCLUSION: Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades. Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4-siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein-protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO-RBR background.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Neoplasias de la Retina , Retinoblastoma , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Retinoblastoma/genética , ARN Interferente Pequeño/genética , ARN Bicatenario/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Neoplasias de la Retina/genética , Regulación de la Expresión Génica de las Plantas , Ribonucleasa III/genética
2.
Dev Dyn ; 251(6): 1035-1053, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35040539

RESUMEN

BACKGROUND: Limb regeneration in the axolotl is achieved by epimorphosis, thus depending on the blastema formation, a mass of progenitor cells capable of proliferating and differentiating to recover all lost structures functionally. During regeneration, the blastema cells accelerate the cell cycle and duplicate its genome, which is inherently difficult to replicate because of its length and composition, thus being prone to suffer double-strand breaks. RESULTS: We identified and characterized two remarkable components of the homologous recombination repair pathway (Amex.RAD51 and Amex.MRE11), which were heterologously expressed, biochemically characterized, and inhibited by specific chemicals. These same inhibitors were applied at different time points after amputation to study their effects during limb regeneration. We observed an increase in cellular senescent accompanied by a slight delay in regeneration at 28 days postamputation regenerated tissues; moreover, inhibitors caused a rise in the double-strand break signaling as a response to the inhibition of the repair mechanisms. CONCLUSIONS: We confirmed the participation and importance of homologous recombination during limb regeneration. The chemical inhibition induces double-strand breaks that lead to DNA damage associated senescence, or in an alternatively way, this damage could be possibly repaired by a different DNA repair pathway, permitting proper regeneration and avoiding senescence.


Asunto(s)
Ambystoma mexicanum , Regeneración , Ambystoma mexicanum/fisiología , Amputación Quirúrgica , Animales , Daño del ADN , Reparación del ADN , Extremidades/fisiología , Regeneración/fisiología
3.
Dev Biol ; 466(1-2): 22-35, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32828730

RESUMEN

Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. In this process, these organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems. We performed a transcriptional global analysis of heart, lung and gills during diverse stages of Ambystoma velasci to investigate its metamorphosis. In our analyses, we identified eight gene clusters for each organ, according to the expression patterns of differentially expressed genes. We found 4064 differentially expressed genes in the heart, 4107 in the lung and 8265 in the gills. Among the differentially expressed genes in the heart, we observed genes involved in the differentiation of cardiomyocytes in the interatrial zone, vasculogenesis and in the maturation of coronary vessels. In the lung, we found genes differentially expressed related to angiogenesis, alveolarization and synthesis of the surfactant protein. In the case of the gills, the most prominent biological processes identified are degradation of extracellular matrix, apoptosis and keratin production. Our study sheds light on the transcriptional responses and the pathways modulation involved in the transformation of the facultative metamorphic salamander A. velasci in an organ-specific manner.


Asunto(s)
Proteínas Anfibias/biosíntesis , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Metamorfosis Biológica/fisiología , Transcriptoma/fisiología , Ambystoma , Animales , Especificidad de Órganos/fisiología
4.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171770

RESUMEN

Phosphate (Pi) is a pivotal nutrient that constraints plant development and productivity in natural ecosystems. Land colonization by plants, more than 470 million years ago, evolved adaptive mechanisms to conquer Pi-scarce environments. However, little is known about the molecular basis underlying such adaptations at early branches of plant phylogeny. To shed light on how early divergent plants respond to Pi limitation, we analyzed the morpho-physiological and transcriptional dynamics of Marchantia polymorpha upon Pi starvation. Our phylogenomic analysis highlights some gene networks present since the Chlorophytes and others established in the Streptophytes (e.g., PHR1-SPX1 and STOP1-ALMT1, respectively). At the morpho-physiological level, the response is characterized by the induction of phosphatase activity, media acidification, accumulation of auronidins, reduction of internal Pi concentration, and developmental modifications of rhizoids. The transcriptional response involves the induction of MpPHR1, Pi transporters, lipid turnover enzymes, and MpMYB14, which is an essential transcription factor for auronidins biosynthesis. MpSTOP2 up-regulation correlates with expression changes in genes related to organic acid biosynthesis and transport, suggesting a preference for citrate exudation. An analysis of MpPHR1 binding sequences (P1BS) shows an enrichment of this cis regulatory element in differentially expressed genes. Our study unravels the strategies, at diverse levels of organization, exerted by M. polymorpha to cope with low Pi availability.


Asunto(s)
Marchantia/genética , Marchantia/metabolismo , Fosfatos/metabolismo , Ecosistema , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Hepatophyta/metabolismo , Filogenia , Factores de Transcripción/metabolismo
5.
Dev Biol ; 442(1): 28-39, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29705332

RESUMEN

In plants, the best characterized plant regeneration process is de novo organogenesis. This type of regeneration is characterized by the formation of a multicellular structure called callus. Calli are induced via phytohormone treatment of plant sections. The callus formation in plants like Agave species with Crassulacean Acid Metabolism (CAM) is poorly studied. In this study, we induced callus formation from Agave salmiana leaves and describe cell arrangement in this tissue. Moreover, we determined and analyzed the transcriptional program of calli, as well as those of differentiated root and leaf tissues, by using RNA-seq. We were able to reconstruct 170,844 transcripts of which 40,644 have a full Open Reading Frame (ORF). The global profile obtained by Next Generation Sequencing (NGS) reveals that several callus-enriched protein coding transcripts are orthologs of previously reported factors highly expressed in Arabidopsis calli. At least 62 genes were differentially expressed in Agave calli, 50 of which were up-regulated. Several of these are actively involved in the perception of, and response to, auxin and cytokinin. Not only are these the first results for the A. salmiana callus, but they provide novel data from roots and leaves of this Agave species, one of the largest non-tree plants in nature.


Asunto(s)
Agave/genética , Organogénesis de las Plantas/genética , Regeneración/genética , Crassulaceae/genética , Citocininas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Transcriptoma/genética
6.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29291975

RESUMEN

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Asunto(s)
Ambystoma mexicanum/genética , Regulación de la Expresión Génica , ARN Mensajero/genética , Regeneración/genética , Transcripción Genética , Transcriptoma , Ambystoma mexicanum/fisiología , Animales , Femenino , Biblioteca de Genes , Ontología de Genes , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , Especificidad de Órganos , Análisis de Componente Principal , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Especificidad de la Especie
7.
Med Res Arch ; 10(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37124720

RESUMEN

The amacrine neurons in the mammalian retina comprise a large variety of cell types with distinct properties and functions that serve to integrate and modulate signals presented to output neurons. The majority of them use either glycine or GABA as inhibitory neurotransmitters and express the glycine transporter 1 (GlyT1) or glutamic acid decarboxylase (GAD67) and GABA transporters (GAT1 and GAT3), as a glycinergic or GABAergic marker respectively. We report here a novel subpopulation of amacrine neurons expressing both, GABAergic and glycinergic markers, in retinas from wild-type C57BL/6J mice and two transgenic lines. In retinal sections from the transgenic line expressing eGFP under the control of the glycine transporter 2, eGFP expression was exclusively found in cell bodies and dendrites of inhibitory amacrine neurons, identified for their immunoreactivity to syntaxin 1A. All of the glycinergic and a large portion of the GABAergic amacrine neurons contained eGFP; of these, 8-10% of GlyT1 positive neurons were also labeled either with GAD67, GAT1 or GAT3. These findings were confirmed in retinas from a wild-type and a mouse line expressing eGFP under the GAD67 promoter and two different anti-GlyT1 antibodies, showing the presence of a subpopulation with a dual phenotype. Moreover, eGFP-positive dendrites on both mouse lines were found juxtaposed to GlyR subunits and the scaffold protein gephyrin in several areas of the inner plexiform layer, demonstrating the glycinergic character of these neurons. This dual phenotype was also demonstrated in primary retina cultures, in which isolated neurons were positive for GlyT1 and GAD67 or GAT1/3. Altogether, these data provide compelling evidence of a subpopulation of dual inhibitory, glycinergic/GABAergic amacrine neurons. The co-release of both neurotransmitters may serve to strengthen the inhibition on ganglion cells under synaptic hyperexcitability.

8.
Mech Dev ; 164: 103651, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127453

RESUMEN

Ambystoma mexicanum (axolotl) has been one of the major experimental models for the study of regeneration during the past 100 years. Axolotl limb regeneration takes place through a multi-stage and complex developmental process called epimorphosis that involves diverse events of cell reprogramming. Such events start with dedifferentiation of somatic cells and the proliferation of quiescent stem cells to generate a population of proliferative cells called blastema. Once the blastema reaches a mature stage, cells undergo progressive differentiation into the diverse cell lineages that will form the new limb. Such pivotal cell reprogramming phenomena depend on the fine-tuned regulation of the cell cycle in each regeneration stage, where cell populations display specific proliferative capacities and differentiation status. The axolotl genome has been fully sequenced and released recently, and diverse RNA-seq approaches have also been generated, enabling the identification and conservatory analysis of core cell cycle regulators in this species. We report here our results from such analyses and present the transcriptional behavior of key regulatory factors during axolotl limb regeneration. We also found conserved protein interactions between axolotl Cyclin Dependent Kinases 2, 4 and 6 and Cyclins type D and E. Canonical CYC-CDK interactions that play major roles in modulating cell cycle progression in eukaryotes.


Asunto(s)
Ambystoma mexicanum/crecimiento & desarrollo , Ciclo Celular , Extremidades/crecimiento & desarrollo , Regeneración , Animales , Diferenciación Celular , Linaje de la Célula , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , RNA-Seq
9.
Microbiol Res ; 241: 126593, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045640

RESUMEN

The biggest non-tree perennial plant species endemic to Mexico were called metl in the Nahua culture; during colonial times, renamed with the Antillean word maguey. Carl von Linné finally renamed them as Agave, a Greek-Latin root word meaning admirable. Since pre-Columbian times, one of the major products obtained from some Agave species is the fermented beverage called pulque or octli. This beverage represents an ancient biotechnological development obtained by the natural fermentation of mead from such plants. Pulque played a central role in Mexican pre-Columbian cultures, while in recent times, there has been a renewed interest in it, due to its high content in nutrients and probiotics. In this study, we used massive sequencing of the 16S rRNA gene and the ribosomal internal transcribed spacer (ITS) to profile the pulque microbiome. We identified 2,855 bacteria operational taxonomic units (OTUs) and 1,494 fungi species in the pulque fermentation. Our results provide the most diverse catalog of microbes during pulque production reported so far. These findings allowed us to identify previously unidentified and core microbes resilient during pulque production, with the potential to be used as fermentation stage biomarkers. We confirmed previous reports of pulque microbes and discovered new ones like the bacteria Sphingomonas and Weisella. Among fungi we found that Saccharomyces cerevisiae was second to Candida zemplina in the studied pulque samples.


Asunto(s)
Agave/microbiología , Bebidas Alcohólicas/microbiología , Bacterias/clasificación , Alimentos Fermentados/microbiología , Hongos/clasificación , Bacterias/genética , Biodiversidad , ADN Intergénico/genética , Hongos/genética , México , Microbiota/genética , Probióticos , ARN Ribosómico 16S/genética
10.
Front Cell Dev Biol ; 8: 562940, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330447

RESUMEN

The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.

11.
Stem Cells Dev ; 25(14): 1035-49, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27224014

RESUMEN

Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.


Asunto(s)
Reprogramación Celular/genética , MicroARNs/metabolismo , Animales , Diferenciación Celular/genética , Plasticidad de la Célula/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA