Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34857649

RESUMEN

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Asunto(s)
Cerebelo/fisiología , Red Nerviosa/fisiología , Propiocepción/fisiología , Médula Espinal/fisiología , Tractos Espinocerebelares/fisiología , Animales , Animales Recién Nacidos , Cerebelo/química , Cerebelo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/química , Red Nerviosa/citología , Médula Espinal/química , Médula Espinal/citología , Tractos Espinocerebelares/química , Tractos Espinocerebelares/citología
2.
Nature ; 551(7679): 227-231, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29088697

RESUMEN

Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Eliminación de Gen , Transmisión Sináptica/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Trastorno Autístico/genética , Trastorno Autístico/psicología , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/patología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Proteínas Portadoras/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/psicología , Cromosomas Humanos Par 16/genética , Proteínas Cullin/metabolismo , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Masculino , Ratones , Herencia Multifactorial/genética , Neurogénesis/genética , Tamaño de los Órganos/genética , Reproducibilidad de los Resultados , Transmisión Sináptica/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA
3.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35459037

RESUMEN

The high impact of air quality on environmental and human health justifies the increasing research activity regarding its measurement, modelling, forecasting and anomaly detection. Raw data offered by sensors usually makes the mentioned time series disciplines difficult. This is why the application of techniques to improve time series processing is a challenge. In this work, Singular Spectral Analysis (SSA) is applied to air quality analysis from real recorded data as part of the Help Responder research project. Authors evaluate the benefits of working with SSA processed data instead of raw data for modelling and estimation of the resulting time series. However, what is more relevant is the proposal to detect indoor air quality anomalies based on the analysis of the time derivative SSA signal when the time derivative of the noisy original data is useless. A dual methodology, evaluating level and dynamics of the SSA signal variation, contributes to identifying risk situations derived from air quality degradation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Predicción , Humanos
4.
Sensors (Basel) ; 19(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207941

RESUMEN

In this paper, we report the design of an aperiodic remote formation controller applied to nonholonomic robots tracking nonlinear, trajectories using an external positioning sensor network. Our main objective is to reduce wireless communication with external sensors and robots while guaranteeing formation stability. Unlike most previous work in the field of aperiodic control, we design a self-triggered controller that only updates the control signal according to the variation of a Lyapunov function, without taking the measurement error into account. The controller is responsible for scheduling measurement requests to the sensor network and for computing and sending control signals to the robots. We design two triggering mechanisms: centralized, taking into account the formation state and decentralized, considering the individual state of each unit. We present a statistical analysis of simulation results, showing that our control solution significantly reduces the need for communication in comparison with periodic implementations, while preserving the desired tracking performance. To validate the proposal, we also perform experimental tests with robots remotely controlled by a mini PC through an IEEE 802.11g wireless network, in which robots pose is detected by a set of camera sensors connected to the same wireless network.

5.
Sensors (Basel) ; 17(9)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878144

RESUMEN

This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor.

6.
Sensors (Basel) ; 17(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027948

RESUMEN

In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.

7.
Sensors (Basel) ; 15(6): 12454-73, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26024415

RESUMEN

One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

8.
Sensors (Basel) ; 15(6): 14569-90, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26102489

RESUMEN

For the problem of pose estimation of an autonomous vehicle using networked external sensors, the processing capacity and battery consumption of these sensors, as well as the communication channel load should be optimized. Here, we report an event-based state estimator (EBSE) consisting of an unscented Kalman filter that uses a triggering mechanism based on the estimation error covariance matrix to request measurements from the external sensors. This EBSE generates the events of the estimator module on-board the vehicle and, thus, allows the sensors to remain in stand-by mode until an event is generated. The proposed algorithm requests a measurement every time the estimation distance root mean squared error (DRMS) value, obtained from the estimator's covariance matrix, exceeds a threshold value. This triggering threshold can be adapted to the vehicle's working conditions rendering the estimator even more efficient. An example of the use of the proposed EBSE is given, where the autonomous vehicle must approach and follow a reference trajectory. By making the threshold a function of the distance to the reference location, the estimator can halve the use of the sensors with a negligible deterioration in the performance of the approaching maneuver.

9.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627062

RESUMEN

Proprioception, the sense of limb and body position, is required to produce accurate and precise movements. Proprioceptive sensory neurons transmit muscle length and tension information to the spinal cord. The function of excitatory neurons in the intermediate spinal cord, which receive this proprioceptive information, remains poorly understood. Using genetic labeling strategies and patch-clamp techniques in acute spinal cord preparations in mice, we set out to uncover how two sets of spinal neurons, Clarke's column (CC) and Atoh1-lineage neurons, respond to electrical activity and how their inputs are organized. Both sets of neurons are located in close proximity in laminae V-VII of the thoracolumbar spinal cord and have been described to receive proprioceptive signals. We find that a majority of CC neurons have a tonic-firing type and express a distinctive hyperpolarization-activated current (Ih). Atoh1-lineage neurons, which cluster into two spatially distinct populations, are mostly a fading-firing type and display similar electrophysiological properties to each other, possibly due to their common developmental lineage. Finally, we find that CC neurons respond to stimulation of lumbar dorsal roots, consistent with prior knowledge that CC neurons receive hindlimb proprioceptive information. In contrast, using a combination of electrical stimulation, optogenetic stimulation, and transsynaptic rabies virus tracing, we find that Atoh1-lineage neurons receive heterogeneous, predominantly local thoracic inputs that include parvalbumin-lineage sensory afferents and local interneuron presynaptic inputs. Altogether, we find that CC and Atoh1-lineage neurons have distinct membrane properties and sensory input organization, representing different subcircuit modes of proprioceptive information processing.


Asunto(s)
Propiocepción , Médula Espinal , Animales , Propiocepción/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Transgénicos , Ratones , Masculino , Femenino , Potenciales de Acción/fisiología , Células Receptoras Sensoriales/fisiología , Técnicas de Placa-Clamp , Ratones Endogámicos C57BL , Vértebras Torácicas
10.
Brain Res ; 1815: 148461, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37308047

RESUMEN

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by persistent deficits in social communication and social interaction. Altered synaptogenesis and aberrant connectivity responsible for social behavior and communication have been reported in autism pathogenesis. Autism has a strong genetic and heritable component; however, environmental factors including toxins, pesticides, infection and in utero exposure to drugs such as VPA have also been implicated in ASD. Administration of VPA during pregnancy has been used as a rodent model to study pathophysiological mechanisms involved in ASD, and in this study, we used the mouse model of prenatal exposure to VPA to assess the effects on striatal and dorsal hippocampus function in adult mice. Alterations in repetitive behaviors and shift habits were observed in mice prenatally exposed to VPA. In particular, such mice presented a better performance in learned motor skills and cognitive deficits in Y-maze learning frequently associated with striatal and hippocampal function. These behavioral changes were associated with a decreased level of proteins involved in the formation and maintenance of excitatory synapses, such as Nlgn-1 and PSD-95. In conclusion, motor skill abilities, repetitive behaviors, and impaired flexibility to shift habits are associated with reduced striatal excitatory synaptic function in the adult mouse prenatally exposed to VPA.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Ratones , Animales , Ácido Valproico/farmacología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Conducta Social , Modelos Animales de Enfermedad , Conducta Animal
11.
Sensors (Basel) ; 12(7): 9566-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23012559

RESUMEN

Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.

12.
Sensors (Basel) ; 12(4): 4133-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666023

RESUMEN

Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example.

13.
Plants (Basel) ; 11(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35050043

RESUMEN

The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated.

14.
J Neurosci ; 30(6): 2115-29, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147539

RESUMEN

Neuroligins (NLs) are a family of neural cell-adhesion molecules that are involved in excitatory/inhibitory synapse specification. Multiple members of the NL family (including NL1) and their binding partners have been linked to cases of human autism and mental retardation. We have now characterized NL1-deficient mice in autism- and mental retardation-relevant behavioral tasks. NL1 knock-out (KO) mice display deficits in spatial learning and memory that correlate with impaired hippocampal long-term potentiation. In addition, NL1 KO mice exhibit a dramatic increase in repetitive, stereotyped grooming behavior, a potential autism-relevant abnormality. This repetitive grooming abnormality in NL1 KO mice is associated with a reduced NMDA/AMPA ratio at corticostriatal synapses. Interestingly, we further demonstrate that the increased repetitive grooming phenotype can be rescued in adult mice by administration of the NMDA receptor partial coagonist d-cycloserine. Broadly, these data are consistent with a role of synaptic cell-adhesion molecules in general, and NL1 in particular, in autism and implicate reduced excitatory synaptic transmission as a potential mechanism and treatment target for repetitive behavioral abnormalities.


Asunto(s)
Aseo Animal , Proteínas de la Membrana/genética , Memoria , Proteínas del Tejido Nervioso/genética , Conducta Espacial , Conducta Estereotipada , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Cicloserina/farmacología , Agonismo Parcial de Drogas , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Potenciación a Largo Plazo , Aprendizaje por Laberinto , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Social , Sinapsis/fisiología
15.
Sensors (Basel) ; 11(3): 2282-303, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163739

RESUMEN

This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Metales/química , Óxidos/química , Fotograbar/instrumentación , Semiconductores/instrumentación , Internet , Factores de Tiempo
16.
Sensors (Basel) ; 11(9): 8339-57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164079

RESUMEN

This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.


Asunto(s)
Rayos Láser , Robótica
17.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33468540

RESUMEN

Motor neurons (MNs) innervating the digit muscles of the intrinsic hand (IH) and intrinsic foot (IF) control fine motor movements. The ability to reproducibly label specifically IH and IF MNs in mice would be a beneficial tool for studies focused on fine motor control. To this end, we find that a CRE knock-in mouse line of Atoh1, a developmentally expressed basic helix-loop-helix (bHLH) transcription factor, reliably expresses CRE-dependent reporter genes in ∼60% of the IH and IF MNs. We determine that CRE-dependent expression in IH and IF MNs is ectopic because an Atoh1 mouse line driving FLPo recombinase does not label these MNs although other Atoh1-lineage neurons in the intermediate spinal cord are reliably identified. Furthermore, the CRE-dependent reporter expression is enriched in the IH and IF MN pools with much sparser labeling of other limb-innervating MN pools such as the tibialis anterior (TA), gastrocnemius (GS), quadricep (Q), and adductor (Ad). Lastly, we find that ectopic reporter expression begins postnatally and labels a mixture of α and γ-MNs. Altogether, the Atoh1 CRE knock-in mouse strain might be a useful tool to explore the function and connectivity of MNs involved in fine motor control when combined with other genetic or viral strategies that can restrict labeling specifically to the IH and IF MNs. Accordingly, we provide an example of sparse labeling of IH and IF MNs using an intersectional genetic approach.


Asunto(s)
Neuronas Motoras , Médula Espinal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Músculo Esquelético
18.
Sensors (Basel) ; 10(4): 3798-814, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22319326

RESUMEN

It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.


Asunto(s)
Conducción de Automóvil , Modelos Teóricos , Redes Neurales de la Computación , Conducta , Humanos , Actividad Motora , Vehículos a Motor , Emisiones de Vehículos
19.
Codas ; 32(5): e20190221, 2020.
Artículo en Español, Inglés | MEDLINE | ID: mdl-33053091

RESUMEN

PURPOSE: This study aimed to cross culturally adapt the Protocol for the Exploration of Natural Metalinguistic Skills in Aphasia (MetAphAs), contributing to the future application in the aphasic Chilean population. METHOD: The sample corresponds to 72 healthy subjects in the region of Valparaíso, between the ages of 50 to 85. The MetAphAs measures natural metalinguistic skills and presents the basic elements on which to base the exploration of the metacognitive dimensions involved in verbal behavior. The validity was ascertained by means of Cronbach's Alpha Coefficient, including the values of each of the 6 sections; the correlations between variables were analyzed by the Pearson coefficient. RESULTS: We observed that 64% of the sample corresponded to the female and 36% to the male gender, with predominant age ranging from 61 to 70 years. We verified adequate correlation between the variables according to the Pearson coefficient, and highly positive values according to Cronbach's Alpha. CONCLUSION: The use of the protocol is viable, with data demonstrating high reliability. The results evidenced high liability, which encourages the continuation process of its validation with Chilean aphasic population.


OBJETIVO: El objetivo de este estudio fue adaptar transculturalmente el Protocolo de Exploración de Habilidades Metalingüísticas Naturales en Afasia (MetAphAs), contribuyendo a la aplicación futura del instrumento en la población afásica chilena. MÉTODO: la muestra corresponde a 72 individuos sanos de la región de Valparaíso, de 50 a 85 años. El Protocolo MetAphAs mide las habilidades metalingüísticas naturales y presenta los elementos básicos en los que debe basarse una exploración de la dimensión metacognitiva involucrada en el comportamiento verbal. La validez se verificó mediante el coeficiente alfa de Cronbach, incluidos los valores de cada una de las 6 secciones; las correlaciones entre las variables fueron analizadas por el coeficiente de Pearson. RESULTADOS: el 64% de la muestra correspondió a mujeres y el 36% a hombres, con el mayor grupo de edad de participación de 61 a 70 años; se verifica una correlación adecuada entre las variables según el coeficiente de Pearson y los valores altamente positivos según el alfa de Cronbach. CONCLUSIÓN: el uso del protocolo fue factible y relevante, con datos que demostraron una alta confiabilidad. Los resultados obtenidos y las ventajas indicadas alientan el uso de este tipo de instrumento como una opción viable para la validación en afásicos chilenos.


Asunto(s)
Afasia , Anciano , Anciano de 80 o más Años , Afasia/diagnóstico , Chile , Femenino , Humanos , Lingüística , Masculino , Persona de Mediana Edad , Psicometría , Reproducibilidad de los Resultados
20.
J Neurosci ; 28(21): 5570-81, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18495891

RESUMEN

The genes Kcnc1 and Kcnc3 encode the subunits for the fast-activating/fast-deactivating, voltage-gated potassium channels Kv3.1 and Kv3.3, which are expressed in several brain regions known to be involved in the regulation of the sleep-wake cycle. When these genes are genetically eliminated, Kv3.1/Kv3.3-deficient mice display severe sleep loss as a result of unstable slow-wave sleep. Within the thalamocortical circuitry, Kv3.1 and Kv3.3 subunits are highly expressed in the thalamic reticular nucleus (TRN), which is thought to act as a pacemaker at sleep onset and to be involved in slow oscillatory activity (spindle waves) during slow-wave sleep. We showed that in cortical electroencephalographic recordings of freely moving Kv3.1/Kv3.3-deficient mice, spectral power is reduced up to 70% at frequencies <15 Hz. In addition, the number of sleep spindles in vivo as well as rhythmic rebound firing of TRN neurons in vitro is diminished in mutant mice. Kv3.1/Kv3.3-deficient TRN neurons studied in vitro show approximately 60% increase in action potential duration and a reduction in high-frequency firing after depolarizing current injections and during rebound burst firing. The results support the hypothesis that altered electrophysiological properties of TRN neurons contribute to the reduced EEG power at slow frequencies in the thalamocortical network of Kv3-deficient mice.


Asunto(s)
Relojes Biológicos/fisiología , Corteza Cerebral/fisiopatología , Canales de Potasio Shaw/deficiencia , Núcleos Talámicos/fisiología , Acetilcolina/metabolismo , Análisis de Varianza , Animales , Monoaminas Biogénicas/metabolismo , Electroencefalografía , Electromiografía , Análisis de Fourier , Técnicas In Vitro , Ratones , Ratones Noqueados , Vías Nerviosas/fisiología , Polisomnografía , Privación de Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA