Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 45(12): 9321-9344, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36413266

RESUMEN

The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.


Asunto(s)
Metales Pesados , Suelo , Microbiología del Suelo , Desarrollo de la Planta , Productos Agrícolas
2.
Microbiol Resour Announc ; 12(6): e0025123, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37255460

RESUMEN

The genus Sinorhizobium comprises rhizobia that fix nitrogen in symbiosis with legumes. To support taxonomic studies of this genus and of rhizobia more broadly, we report complete genome sequences and annotations for the species type strains Sinorhizobium garamanticum LMG 24692 and Sinorhizobium numidicum LMG 27395 and CIP 109850.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA