Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047227

RESUMEN

The study reveals the polymer-crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core-shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core-shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer-Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core-shell composite provides sustainable antibacterial activity against Staphylococcus aureus.


Asunto(s)
Grafito , Nanofibras , Grafito/farmacología , Alcohol Polivinílico , Dióxido de Silicio , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes , Nanofibras/uso terapéutico
2.
Nanotechnology ; 32(43)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34271553

RESUMEN

Graphene-based materials play an essential role in a wide range of modern technologies due to their surface properties such as adsorption capacity and controllable wettability, which depend on the production methods. For practical applications, it is crucial to control the surface properties to achieve the desired wetting characteristics, which can be described with the contact angle (CA). Here, we experimentally investigate the wettability properties of the carbon nanowalls and show how to manage a wetting transition from superhydrophobic to superhydrophilic states. A CA of 170° was reached with direct plasma synthesis, while an angle smaller than 20° was achieved during the atmosphere plasma modification. Combining the formation of the surface groups due to the plasma treatment results and the macroscale wetting behavior in terms of the Cassie-Baxter model, we qualitatively explain how the observed wetting enhancement is induced by both controlled chemical and geometrical surface-heterogeneity.

3.
J Hazard Mater ; 480: 135964, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39342843

RESUMEN

Extremely limited organic carbon sources and aerobic environment in micro-polluted reservoir water make conventional denitrification exceptionally challenging. As a result, total nitrogen (TN) concentration in most reservoir waters exceeds standard value year-round. In this study, for the first time, we constructed a mini water-lifting and aeration system (mini-WLAS) to remove nitrate in actual reservoir water. In the mini-WLAS, H2 was produced through electrolysis of reservoir water without adding any electrolyte, and the ascending water flow carried the generated H2 from lower layer to upper bacteria layer. The maximum denitrification rate reached 0.29 mg (L·d)-1 under dissolved oxygen (DO) concentration of 6-8 mg L-1, 6.04 times higher than that of the control group. There is almost no accumulation of NH4+-N, NO2--N, and N2O, and the concentration of CODMn decreased by 55.2 %. More importantly, the pH stayed near-neutral steadily throughout the whole process. Microbial community analysis showed that the abundances of hydrogenotrophic denitrifying bacteria (HDB) were 2 orders higher than those in the control system. Some HDB could work under aerobic conditions, providing an explanation for the excellent denitrification performance under high DO. This study provides a novel perspective for TN removal from reservoir water.

4.
Sci Total Environ ; 946: 174332, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38950630

RESUMEN

Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.


Asunto(s)
Electrodos , Transporte de Electrón , Bacterias/metabolismo , Shewanella/metabolismo , Fuentes de Energía Bioeléctrica , Técnicas Biosensibles/métodos
5.
Micron ; 166: 103399, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634433

RESUMEN

High-entropy alloys (HEAs) are promoted as promising materials for various applications, including those dealing with high-temperatures. It requires understanding of the oxidation at different temperatures, especially for such a technological process as additive manufacturing (AM), which is able to produce unique structure. The present work evaluates the oxidation resistance of the CrFeCoNiAl HEAs produced by AM of the blends of CrFeCoNi and Al powders at temperatures of 800 and 1000 â„ƒ. Al forms the Al2O3 under the top Cr2O3 layer and prevents the delamination of the oxide scale at considered temperatures. Oxygen diffusion mainly occurs homogeneously through the columnar grain boundaries typical for AM materials. AlN precipitates under the Al2O3 formations were observed for the sample with the highest aluminium concentration due to dissolution of nitrogen in the as-built material.

6.
Materials (Basel) ; 16(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770057

RESUMEN

Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.

7.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446499

RESUMEN

Extraordinary properties of two-dimensional materials make them attractive for applications in different fields. One of the prospective niches is optical applications, where such types of materials demonstrate extremely sensitive performance and can be used for labeling. However, the optical properties of liquid-exfoliated 2D materials need to be analyzed. The purpose of this work is to study the absorption and luminescent properties of MoS2 exfoliated in the presence of sodium cholate, which is the most often used surfactant. Ultrasound bath and mixer-assisted exfoliation in water and dimethyl sulfoxide were used. The best quality of MoS2 nanosheets was achieved using shear-assisted liquid-phase exfoliation as a production method and sodium cholate (SC) as a surfactant. The photoluminescent properties of MoS2 nanosheets varied slightly when changing the surfactant concentrations in the range C(SC) = 0.5-2.5 mg/mL. This work is of high practical importance for further enhancement of MoS2 photoluminescent properties via chemical functionalization.

8.
Biomimetics (Basel) ; 8(1)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975359

RESUMEN

In surgical dentistry, suture material is the only foreign body that remains in the tissues after surgery, and it can lead to several negative reactions, for example, infection of the wound. The purpose of this study was to compare the mechanical properties and microbiological resistance of mono- and polyfilament suture materials used in tooth extraction operations. The study of elongation and knot force was carried out on an Instron 5969 Dual Column Testing System device. The capillarity of the materials was studied on a setup assembled by the authors manually by immersing the ends of the filaments in a colored manganese solution. A microbiological study was carried out on the threads taken for the experiment immediately after wound suturing, and on day 7, at which time they were removed. The comparison was made according to Rothia mucilaginosa, Streptococcus sanguinis, Staphylococcus epidermidis. Results: monofilament suture materials (Prolene and Glycolon), after calculating the Kruskal-Wallis and Mann-Whitney indices, showed better performance in all experiments compared to polyfilament sutures (Vicryl and PGA). In capillarity comparison, there was a significant difference between groups (p = 0.00018). According to the sum of the results of three microbiological studies on day 7, monofilament suture materials absorbed less of the studied bacteria on their surface compared to the polyfilament ones (p < 0.05). Conclusions: Of the studied suture materials, Prolene had the best microbiological resistance and good mechanical properties.

9.
J Biomed Opt ; 28(5): 057002, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37193365

RESUMEN

Significance: Edema occurs in the course of various skin diseases. It manifests itself in changes in water concentrations in skin layers: dermis and hypodermis and their thicknesses. In medicine and cosmetology, objective tools are required to assess the skin's physiological parameters. The dynamics of edema and the skin of healthy volunteers were studied using spatially resolved diffuse reflectance spectroscopy (DRS) in conjunction with ultrasound (US). Aim: In this work, we have developed a method based on DRS with a spatial resolution (SR DRS), allowing us to simultaneously assess water content in the dermis, dermal thickness, and hypodermal thickness. Approach: An experimental investigation of histamine included edema using SR DRS under the control of US was conducted. An approach for skin parameter determination was studied and confirmed using Monte-Carlo simulation of diffuse reflectance spectra for a three-layered system with the varying dermis and hypodermis parameters. Results: It was shown that an interfiber distance of 1 mm yields a minimal relative error of water content determination in the dermis equal to 9.3%. The lowest error of hypodermal thickness estimation was achieved with the interfiber distance of 10 mm. Dermal thickness for a group of volunteers (7 participants, 21 measurement sites) was determined using SR DRS technique with an 8.3% error using machine learning approaches, taking measurements at multiple interfiber distances into account. Hypodermis thickness was determined with root mean squared error of 0.56 mm for the same group. Conclusions: This study demonstrates that measurement of the skin diffuse reflectance response at multiple distances makes it possible to determine the main parameters of the skin and will serve as the basis for the development and verification of an approach that works in a wide range of skin structure parameters.


Asunto(s)
Edema , Piel , Humanos , Piel/diagnóstico por imagen , Piel/química , Análisis Espectral/métodos , Simulación por Computador , Método de Montecarlo
10.
Materials (Basel) ; 16(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297329

RESUMEN

Dental implants are thought to be implanted for life, but throughout their lifespan, they function in aggressive oral environment, resulting in corrosion of the material itself as well as possible inflammation of adjacent tissues. Therefore, materials and oral products for people with metallic intraoral appliances must be chosen carefully. The purpose of this study was to investigate the corrosion behavior of common titanium and cobalt-chromium alloys in interaction with various dry mouth products using electrochemical impedance spectroscopy (EIS). The study showed that different dry mouth products lead to different open circuit potentials, corrosion voltages, and currents. The corrosion potentials of Ti64 and CoCr ranged from -0.3 to 0 V and -0.67 to 0.7 V, respectively. In contrast to titanium, pitting corrosion was observed for the cobalt-chromium alloy, leading to the release of Co and Cr ions. Based on the results, it can be argued that the commercially available dry mouth remedies are more favorable for dental alloys in terms of corrosion compared to Fusayama Meyer's artificial saliva. Thus, to prevent undesirable interactions, the individual characteristics of not only the composition of each patient's tooth and jaw structure, but also the materials already used in their oral cavity and oral hygiene products, must be taken into account.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA