Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074916

RESUMEN

Pogona vitticeps has female heterogamety (ZZ/ZW), but the master sex-determining gene is unknown, as it is for all reptiles. We show that nr5a1 (Nuclear Receptor Subfamily 5 Group A Member 1), a gene that is essential in mammalian sex determination, has alleles on the Z and W chromosomes (Z-nr5a1 and W-nr5a1), which are both expressed and can recombine. Three transcript isoforms of Z-nr5a1 were detected in gonads of adult ZZ males, two of which encode a functional protein. However, ZW females produced 16 isoforms, most of which contained premature stop codons. The array of transcripts produced by the W-borne allele (W-nr5a1) is likely to produce truncated polypeptides that contain a structurally normal DNA-binding domain and could act as a competitive inhibitor to the full-length intact protein. We hypothesize that an altered configuration of the W chromosome affects the conformation of the primary transcript generating inhibitory W-borne isoforms that suppress testis determination. Under this hypothesis, the genetic sex determination (GSD) system of P. vitticeps is a W-borne dominant female-determining gene that may be controlled epigenetically.


Asunto(s)
Alelos , Cromosomas/genética , Empalme del ARN , Procesos de Determinación del Sexo , Factor Esteroidogénico 1/genética , Secuencia de Aminoácidos , Animales , Cromosomas/química , Femenino , Dosificación de Gen , Lagartos , Masculino , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Reptiles , Cromosomas Sexuales , Factores Sexuales , Factor Esteroidogénico 1/química , Relación Estructura-Actividad
2.
BMC Biol ; 22(1): 47, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413947

RESUMEN

BACKGROUND: Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS: Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS: Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.


Asunto(s)
Caimanes y Cocodrilos , ADN Satélite , Animales , ADN Satélite/genética , Caimanes y Cocodrilos/genética , Cromosomas , Genómica , Evolución Molecular
3.
Chromosoma ; 132(4): 289-303, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37493806

RESUMEN

Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Pintura Cromosómica , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Cariotipo , Evolución Molecular
4.
Mol Biol Evol ; 40(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279881

RESUMEN

Chromosome rearrangements are often implicated with genomic divergence and are proposed to be associated with species evolution. Rearrangements alter the genomic structure and interfere with homologous recombination by isolating a portion of the genome. Integration of multiplatform next-generation DNA sequencing technologies has enabled putative identification of chromosome rearrangements in many taxa; however, integrating these data sets with cytogenetics is still uncommon beyond model genetic organisms. Therefore, to achieve the ultimate goal for the genomic classification of eukaryotic organisms, physical chromosome mapping remains critical. The ridge-tailed goannas (Varanus acanthurus BOULENGER) are a group of dwarf monitor lizards comprised of several species found throughout northern Australia. These lizards exhibit extreme divergence at both the genic and chromosomal levels. The chromosome polymorphisms are widespread extending across much of their distribution, raising the question if these polymorphisms are homologous within the V. acanthurus complex. We used a combined genomic and cytogenetic approach to test for homology across divergent populations with morphologically similar chromosome rearrangements. We showed that more than one chromosome pair was involved with the widespread rearrangements. This finding provides evidence to support de novo chromosome rearrangements have occurred within populations. These chromosome rearrangements are characterized by fixed allele differences originating in the vicinity of the centromeric region. We then compared this region with several other assembled genomes of reptiles, chicken, and the platypus. We demonstrated that the synteny of genes in Reptilia remains conserved despite centromere repositioning across these taxa.


Asunto(s)
Evolución Molecular , Lagartos , Animales , Alelos , Lagartos/genética , Centrómero/genética , Reordenamiento Génico
5.
Heredity (Edinb) ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039117

RESUMEN

Neotropical fishes exhibit remarkable karyotype diversity, whose evolution is poorly understood. Here, we studied genetic differences in 60 individuals, from 11 localities of one species, the wolf fish Hoplias malabaricus, from populations that include six different "karyomorphs". These differ in Y-X chromosome differentiation, and, in several cases, by fusions with autosomes that have resulted in multiple sex chromosomes. Other differences are also observed in diploid chromosome numbers and morphologies. In an attempt to start understanding how this diversity was generated, we analyzed within- and between-population differences in a genome-wide sequence data set. We detect clear genotype differences between karyomorphs. Even in sympatry, samples with different karyomorphs differ more in sequence than samples from allopatric populations of the same karyomorph, suggesting that they represent populations that are to some degree reproductively isolated. However, sequence divergence between populations with different karyomorphs is remarkably low, suggesting that chromosome rearrangements may have evolved during a brief evolutionary time. We suggest that the karyotypic differences probably evolved in allopatry, in small populations that would have allowed rapid fixation of rearrangements, and that they became sympatric after their differentiation. Further studies are needed to test whether the karyotype differences contribute to reproductive isolation detected between some H. malabaricus karyomorphs.

6.
Chromosome Res ; 31(1): 9, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36745262

RESUMEN

Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.


Asunto(s)
Lagartos , Animales , Inversión Cromosómica , Reordenamiento Génico , Flujo Genético , Especiación Genética , Lagartos/genética , Polimorfismo Genético
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836564

RESUMEN

The diversity of genome sizes across the tree of life is of key interest in evolutionary biology. Various correlates of variation in genome size, such as accumulation of transposable elements (TEs) or rate of DNA gain and loss, are well known, but the underlying molecular mechanisms driving or constraining genome size are poorly understood. Here, we study one of the smallest genomes among frogs characterized thus far, that of the ornate burrowing frog (Platyplectrum ornatum) from Australia, and compare it to other published frog and vertebrate genomes to examine the forces driving reduction in genome size. At ∼1.06 gigabases (Gb), the P. ornatum genome is like that of birds, revealing four major mechanisms underlying TE dynamics: reduced abundance of all major classes of TEs; increased net deletion bias in TEs; drastic reduction in intron lengths; and expansion via gene duplication of the repertoire of TE-suppressing Piwi genes, accompanied by increased expression of Piwi-interacting RNA (piRNA)-based TE-silencing pathway genes in germline cells. Transcriptomes from multiple tissues in both sexes corroborate these results and provide insight into sex-differentiation pathways in Platyplectrum Genome skimming of two closely related frog species (Lechriodus fletcheri and Limnodynastes fletcheri) confirms a reduction in TEs as a major driver of genome reduction in Platyplectrum and supports a macroevolutionary scenario of small genome size in frogs driven by convergence in life history, especially rapid tadpole development and tadpole diet. The P. ornatum genome offers a model for future comparative studies on mechanisms of genome size reduction in amphibians and vertebrates generally.


Asunto(s)
Anuros/genética , Aves/genética , Tamaño del Genoma , Animales , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Genoma , Cariotipificación , Masculino , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reproducción/genética , Análisis de Secuencia de ADN/métodos , Cromosomas Sexuales , Procesos de Determinación del Sexo , Conducta Sexual Animal
8.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725164

RESUMEN

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Asunto(s)
Evolución Biológica , Cordados/genética , Cromosomas de los Mamíferos , Genoma , Animales , Secuencia de Bases , Secuencia Conservada
9.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35099570

RESUMEN

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Asunto(s)
Characiformes , Animales , Characiformes/genética , ADN , Evolución Molecular , Femenino , Peces/genética , Genoma , Genómica , Cromosomas Sexuales/genética
10.
J Mol Evol ; 91(6): 976-989, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010517

RESUMEN

Adaptation to different salinity environments can enhance morphological and genomic divergence between related aquatic taxa. Species of prawns in the genus Macrobrachium naturally inhabit different osmotic niches and possess distinctive lifecycle traits associated with salinity tolerance. This study was conducted to investigate the patterns of adaptive genomic divergence during freshwater colonization in 34 Macrobrachium species collected from four continents; Australia, Asia, North and South America. Genotyping-by-sequencing (GBS) technique identified 5018 loci containing 82,636 single nucleotide polymorphisms (SNPs) that were used to reconstruct a phylogenomic tree. An additional phylogeny was reconstructed based on 43 candidate genes, previously identified as being potentially associated with freshwater adaptation. Comparison of the two phylogenetic trees revealed contrasting topologies. The GBS tree indicated multiple independent continent-specific invasions into freshwater by Macrobrachium lineages following common marine ancestry, as species with abbreviated larval development (ALD), i.e., species having a full freshwater life history, appeared reciprocally monophyletic within each continent. In contrast, the candidate gene tree showed convergent evolution for all ALD species worldwide, forming a single, well-supported clade. This latter pattern is likely the result of common evolutionary pressures selecting key mutations favored in continental freshwater habitats Results suggest that following multiple independent invasions into continental freshwaters at different evolutionary timescales, Macrobrachium taxa experienced adaptive genomic divergence, and in particular, convergence in the same genomic regions with parallel shifts in specific conserved phenotypic traits, such as evolution of larger eggs with abbreviated larval developmental.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/genética , Filogenia , Genómica , Agua Dulce , Genoma/genética
11.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240350

RESUMEN

Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.


Asunto(s)
Genoma , Genómica , Animales , Peces/genética , Cariotipo , Análisis Citogenético
12.
Proc Biol Sci ; 289(1976): 20220689, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642367

RESUMEN

Evolutionary transitions in sex-determining systems have occurred frequently yet understanding how they occur remains a major challenge. In reptiles, transitions from genetic to temperature-dependent sex determination can occur if the gene products that determine sex evolve thermal sensitivity, resulting in sex-reversed individuals. However, evidence of sex reversal is limited to oviparous reptiles. Here we used thermal experiments to test whether sex reversal is responsible for differences in sex determination in a viviparous reptile, Carinascincus ocellatus, a species with XY sex chromosomes and population-specific sex ratio response to temperature. We show that sex reversal is occurring and that its frequency is related to temperature. Sex reversal was unidirectional (phenotypic males with XX genotype) and observed in both high- and low-elevation populations. We propose that XX-biased genotypic sex ratios could produce either male- or female-biased phenotypic sex ratios as observed in low-elevation C. ocellatus under variable rates of XX sex reversal. We discuss reasons why sex reversal may not influence sex ratios at high elevation. Our results suggest that the mechanism responsible for evolutionary transitions from genotypic to temperature-dependent sex determination is more complex than can be explained by a single process such as sex reversal.


Asunto(s)
Lagartos , Razón de Masculinidad , Animales , Clima , Femenino , Humanos , Lagartos/genética , Masculino , Cromosomas Sexuales , Procesos de Determinación del Sexo
13.
Mol Ecol ; 31(14): 3859-3870, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35691011

RESUMEN

Sex chromosomes constantly exist in a dynamic state of evolution: rapid turnover and change of heterogametic sex during homomorphic state, and often stepping out to a heteromorphic state followed by chromosomal decaying. However, the forces driving these different trajectories of sex chromosome evolution are still unclear. The Japanese frog Glandirana rugosa is one taxon well suited to the study on these driving forces. The species has two different heteromorphic sex chromosome systems, XX-XY and ZZ-ZW, which are separated in different geographic populations. Both XX-XY and ZZ-ZW sex chromosomes are represented by chromosome 7 (2n = 26). Phylogenetically, these two systems arose via hybridization between two ancestral lineages of West Japan and East Japan populations, of which sex chromosomes are homomorphic in both sexes and to date have not yet been identified. Identification of the sex chromosomes will give us important insight into the mechanisms of sex chromosome evolution in this species. Here, we used a high-throughput genomic approach to identify the homomorphic XX-XY sex chromosomes in both ancestral populations. Sex-linked DNA markers of West Japan were aligned to chromosome 1, whereas those of East Japan were aligned to chromosome 3. These results reveal that at least two turnovers across three different sex chromosomes 1, 3 and 7 occurred during evolution of this species. This finding raises the possibility that cohabitation of the two different sex chromosomes from ancestral lineages induced turnover to another new one in their hybrids, involving transition of heterogametic sex and evolution from homomorphy to heteromorphy.


Asunto(s)
Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Anuros/genética , Evolución Molecular , Femenino , Marcadores Genéticos , Masculino , Ranidae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética
14.
Dev Growth Differ ; 64(6): 279-289, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35881001

RESUMEN

Sex chromosomes in poikilothermal vertebrates are characterized by rapid and diverse evolution at the species or population level. Our previous study revealed that the Taiwanese frog Odorrana swinhoana (2n = 26) has a unique system of multiple sex chromosomes created by three sequential translocations among chromosomes 1, 3, and 7. To reveal the evolutionary history of sex chromosomes in the Odorrana species complex, we first identified the original, homomorphic sex chromosomes, prior to the occurrence of translocations, in the ancestral-type population of O. swinhoana. Then, we extended the investigation to a closely related Japanese species, Odorrana utsunomiyaorum, which is distributed on two small islands. We used a high-throughput nuclear genomic approach to analyze single-nucleotide polymorphisms and identify the sex-linked markers. Those isolated from the O. swinhoana ancestral-type population were found to be aligned to chromosome 1 and showed male heterogamety. In contrast, almost all the sex-linked markers isolated from O. utsunomiyaorum were heterozygous in females and homozygous in males and were aligned to chromosome 9. Morphologically, we confirmed chromosome 9 to be heteromorphic in females, showing a ZZ-ZW sex determination system, in which the W chromosomes were heterochromatinized in a stripe pattern along the chromosome axis. These results indicated that after divergence of the two species, the ancestral homomorphic sex chromosome 1 underwent highly rapid and diverse evolution, i.e., sequential translocations with two autosomes in O. swinhoana, and turnover to chromosome 9 in O. utsunomiyaorum, with a transition from XY to ZW heterogamety and change to heteromorphy.


Asunto(s)
Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Anuros/genética , Evolución Molecular , Femenino , Genoma , Masculino , Ranidae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética
15.
Chromosome Res ; 29(3-4): 391-416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34694531

RESUMEN

Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.


Asunto(s)
Characiformes , Animales , Characiformes/genética , Mapeo Cromosómico , Pintura Cromosómica , Hibridación Genómica Comparativa , Evolución Molecular , Femenino , Humanos , Cromosomas Sexuales/genética
16.
Bioessays ; 42(9): e2000152, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448449

RESUMEN

On the Black Swans of conventional sex determination theory: There aren't many, but when an exception to the standard model of sex determination (evolutionary turnover of genes playing the role of "master sex determiner") arises, it certainly screams out for an explanation. In this issue, a novel one is put forward. It now awaits testing, particularly at the population level.


Asunto(s)
Cromosomas Sexuales , Procesos de Determinación del Sexo , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética
17.
Genomics ; 113(1 Pt 2): 624-636, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002626

RESUMEN

Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.


Asunto(s)
Evolución Molecular , Naja naja/genética , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética , Animales , Naja naja/clasificación , Filogenia
18.
Cytogenet Genome Res ; 161(3-4): 187-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744896

RESUMEN

Despite conservation of the diploid number, a huge diversity in karyotype formulae is found in the Ancistrini tribe (Loricariidae, Hypostominae). However, the lack of cytogenetic data for many groups impairs a comprehensive understanding of the chromosomal relationships and the impact of chromosomal changes on their evolutionary history. Here, we present for the first time the karyotype of Panaqolus tankei Cramer & Sousa, 2016. We focused on the chromosomal characterization, using conventional and molecular cytogenetic techniques to unravel the evolutionary trends of this tribe. P. tankei, as most species of its sister group Pterygoplichthini, also possessess a conserved diploid number of 52 chromosomes. We observed heterochromatin regions in the centromeres of many chromosomes; pairs 5 and 6 presented interstitial heterochromatin regions, whereas pairs 23 and 24 showed extensive heterochromatin regions in their q arms. In situ localization of 18S rDNA showed hybridization signals correlating with the nucleolus organizer regions, which are located in the q arms of pair 5. However, the 5S rDNA was detected in the centromeric and terminal regions of the q arms of pair 8. (TTAGGG)n hybridized only in the terminal regions of all chromosomes. Microsatellite in situ localization showed divergent patterns, (GA)15 repeated sequences were restricted to the terminal regions of some chromosomes, whereas (AC)15 and (GT)15 showed a scattered hybridization pattern throughout the genome. Intraspecific comparative genomic hybridization was performed on the chromosomes of P. tankei to verify the existence of sex-specific regions. The results revealed only a limited number of overlapping hybridization signals, coinciding with the heterochromatin in centromeric regions without any sex-specific signals in both males and females. Our study provides a karyotype description of P. tankei, highlighting extensive differences in the karyotype formula, the heterochromatin regions, and sites of 5S and 18S rDNA, as compared with data available for the genus.


Asunto(s)
Bagres/genética , Cromosomas/genética , Análisis Citogenético/métodos , Cariotipificación/métodos , Animales , Brasil , Centrómero/genética , Hibridación Genómica Comparativa/métodos , Diploidia , Femenino , Heterocromatina , Hibridación Fluorescente in Situ/métodos , Cariotipo , Masculino , Región Organizadora del Nucléolo/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 5S/genética , Ríos
19.
Nature ; 523(7558): 79-82, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26135451

RESUMEN

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.


Asunto(s)
Adaptación Fisiológica , Procesos de Determinación del Sexo/fisiología , Temperatura , Animales , Australia , Femenino , Masculino , Datos de Secuencia Molecular , Reptiles , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Razón de Masculinidad
20.
Cytogenet Genome Res ; 160(10): 610-624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33207346

RESUMEN

Agamid lizards (Squamata: Agamidae) are karyotypically heterogeneous. Among the 101 species currently described from Australia, all are from the subfamily Amphibolurinae. This group is, with some exceptions, karyotypically conserved, and all species involving heterogametic sex show female heterogamety. Here, we describe the chromosomes of 2 additional Australian agamid lizards, Tympanocryptis lineata and Rankinia diemensis. These species are phylogenetically and cytogenetically sisters to the well-characterised Pogona vitticeps, but their sex chromosomes and other chromosomal characteristics are unknown. In this study, we applied advanced molecular cytogenetic techniques, such as fluorescence in situ hybridisation (FISH) and cross-species gene mapping, to characterise chromosomes and to identify sex chromosomes in these species. Our data suggest that both species have a conserved karyotype with P. vitticeps but with subtle rearrangements in the chromosomal landscapes. We could identify that T. lineata possesses a female heterogametic system (ZZ/ZW) with a pair of sex microchromosomes, while R. diemensis may have heterogametic sex chromosomes, but this requires further investigations. Our study shows the pattern of chromosomal rearrangements between closely related species, explaining the speciation within Australian agamid lizards of similar karyotypes.


Asunto(s)
Cromosomas/genética , Reordenamiento Génico/genética , Cariotipo , Lagartos/genética , Animales , Bandeo Cromosómico , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Células Clonales , Metilación de ADN/genética , Geografía , Repeticiones de Microsatélite/genética , Especificidad de la Especie , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA