Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 20(8): e1012424, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102439

RESUMEN

Manipulating evolutionary forces imposed by hosts on pathogens like genetic drift and selection could avoid the emergence of virulent pathogens. For instance, increasing genetic drift could decrease the risk of pathogen adaptation through the random fixation of deleterious mutations or the elimination of favorable ones in the pathogen population. However, no experimental proof of this approach is available for a plant-pathogen system. We studied the impact of pepper (Capsicum annuum) lines carrying the same major resistance gene but contrasted genetic backgrounds on the evolution of Potato virus Y (PVY). The pepper lines were chosen for the contrasted levels of genetic drift (inversely related to Ne, the effective population size) they exert on PVY populations, as well as for their contrasted resistance efficiency (inversely related to the initial replicative fitness, Wi, of PVY in these lines). Experimental evolution was performed by serially passaging 64 PVY populations every month on six contrasted pepper lines during seven months. These PVY populations exhibited highly divergent evolutionary trajectories, ranging from viral extinctions to replicative fitness gains. The sequencing of the PVY VPg cistron, where adaptive mutations are likely to occur, allowed linking these replicative fitness gains to parallel adaptive nonsynonymous mutations. Evolutionary trajectories were well explained by the genetic drift imposed by the host. More specifically, Ne, Wi and their synergistic interaction played a major role in the fate of PVY populations. When Ne was low (i.e. strong genetic drift), the final PVY replicative fitness remained close to the initial replicative fitness, whereas when Ne was high (i.e. low genetic drift), the final PVY replicative fitness was high independently of the replicative fitness of the initially inoculated virus. We show that combining a high resistance efficiency (low Wi) and a strong genetic drift (low Ne) is the best solution to increase resistance durability, that is, to avoid virus adaptation on the long term.


Asunto(s)
Capsicum , Flujo Genético , Enfermedades de las Plantas , Potyvirus , Capsicum/virología , Capsicum/genética , Potyvirus/genética , Potyvirus/patogenicidad , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Interacciones Huésped-Patógeno/genética , Resistencia a la Enfermedad/genética , Adaptación Fisiológica/genética , Mutación
2.
New Phytol ; 243(4): 1490-1505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021210

RESUMEN

Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Vitis , Vitis/genética , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Oomicetos/patogenicidad , Estudio de Asociación del Genoma Completo , Eliminación de Secuencia , Genes de Plantas , Haplotipos/genética , Eliminación de Gen , Fenotipo
3.
PLoS Comput Biol ; 19(9): e1011399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656768

RESUMEN

Estimating the distance at which pathogens disperse from one season to the next is crucial for designing efficient control strategies for invasive plant pathogens and a major milestone in the reduction of pesticide use in agriculture. However, we still lack such estimates for many diseases, especially for insect-vectored pathogens, such as Flavescence dorée (FD). FD is a quarantine disease threatening European vineyards. Its management is based on mandatory insecticide treatments and the removal of infected plants identified during annual surveys. This paper introduces a general statistical framework to model the epidemiological dynamics of FD in a mechanistic manner that can take into account missing hosts in surveyed fields (resulting from infected plant removals). We parameterized the model using Markov chain Monte Carlo (MCMC) and data augmentation from surveillance data gathered in Bordeaux vineyards. The data mainly consist of two snapshot maps of the infectious status of all the plants in three adjacent fields during two consecutive years. We demonstrate that heavy-tailed dispersal kernels best fit the spread of FD and that on average, 50% (resp. 80%) of new infection occurs within 10.5 m (resp. 22.2 m) of the source plant. These values are in agreement with estimates of the flying capacity of Scaphoideus titanus, the leafhopper vector of FD, reported in the literature using mark-capture techniques. Simulations of simple removal scenarios using the fitted model suggest that cryptic infection hampered FD management. Future efforts should explore whether strategies relying on reactive host removal can improve FD management.


Asunto(s)
Insecticidas , Enfermedades de las Plantas , Animales , Teorema de Bayes , Agricultura , Insectos Vectores
4.
Phytopathology ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007734

RESUMEN

While resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control), while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed 1) in the same cultivar (pyramiding strategy), in single-gene-resistant cultivars grown 2) in the same field (mixture strategy) or 3) in different fields (mosaic strategy), or 4) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogens interaction: small fields are thought to reduce pest density and disease transmission. Here we used the spatially-explicit stochastic model landsepi to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared to hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socio-economic policies favoring the adoption of optimal resistant management strategies are discussed.

5.
Mol Ecol ; 32(10): 2461-2471, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35906846

RESUMEN

Growing genetically resistant plants allows pathogen populations to be controlled and reduces the use of pesticides. However, pathogens can quickly overcome such resistance. In this context, how can we achieve sustainable crop protection? This crucial question has remained largely unanswered despite decades of intense debate and research effort. In this study, we used a bibliographic analysis to show that the research field of resistance durability has evolved into three subfields: (1) "plant breeding" (generating new genetic material), (2) "molecular interactions" (exploring the molecular dialogue governing plant-pathogen interactions) and (3) "epidemiology and evolution" (explaining and forecasting of pathogen population dynamics resulting from selection pressure[s] exerted by resistant plants). We argue that this triple split of the field impedes integrated research progress and ultimately compromises the sustainable management of genetic resistance. After identifying a gap among the three subfields, we argue that the theoretical framework of population genetics could bridge this gap. Indeed, population genetics formally explains the evolution of all heritable traits, and allows genetic changes to be tracked along with variation in population dynamics. This provides an integrated view of pathogen adaptation, in particular via evolutionary-epidemiological feedbacks. In this Opinion Note, we detail examples illustrating how such a framework can better inform best practices for developing and managing genetically resistant cultivars.


Asunto(s)
Protección de Cultivos , Fitomejoramiento , Genética de Población , Plantas , Adaptación Fisiológica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control
6.
Phytopathology ; 112(11): 2329-2340, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35657702

RESUMEN

We describe a standard method for characterizing the virulence profile of Plasmopara viticola, the causal agent of grapevine downy mildew. We used 33 European strains to inoculate six grapevine varieties carrying the principal factors for resistance to downy mildew (Rpv1, Rpv3.1, Rpv3.2, Rpv5, Rpv6, Rpv10, and Rpv12) and the susceptible Vitis vinifera 'Chardonnay'. For each interaction, we characterized the level of sporulation by image analysis and the intensity of the grapevine hypersensitive response by visual score. We propose a definition for the breakdown of grapevine quantitative resistances combining these two traits. Among the 33 strains analyzed, 28 are virulent on at least one resistance factor. We identified five different pathotypes across the 33 strains analyzed: two pathotypes overcoming a single resistance factor (vir3.1 and vir3.2) and three complex pathotypes overcoming multiple resistance factors (vir3.1,3.2; vir3.2,12; vir3.1,3.2,10). Our findings confirm the widespread occurrence of P. viticola strains overcoming the Rpv3 haplotypes (28 strains). We also detected the first breakdown of resistance to the Rpv10 by a strain from Germany and the breakdown of Rpv12 factors by a strain from Hungary. The pathotyping method proposed here and the associated differential host range lay the groundwork for the early detection of resistance breakdown in grapevines. This approach will also facilitate the monitoring of the evolution of P. viticola populations at large spatial scales. This is an essential step forward to promoting durable management of the resistant grapevine varieties currently available.


Asunto(s)
Oomicetos , Peronospora , Vitis , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas , Oomicetos/genética , Peronospora/genética , Vitis/fisiología
7.
Phytopathology ; 112(8): 1686-1697, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35230150

RESUMEN

Flavescence dorée (FD) is a quarantine disease threatening European vineyards. Its management is based on mandatory insecticide treatments and the uprooting of infected plants identified during annual surveys. Field surveys are currently not optimized because the drivers affecting FD spread in vineyard landscapes remain poorly understood. We collated a georeferenced dataset of FD detection, collected from 34,581 vineyard plots over 5 years in the South West France wine region. Spatial models fitted with integrated nested Laplace approximation were used to identify local and landscape factors affecting FD detection and infection. Our analysis highlights the importance of sampling period on FD detection and of local practices and landscape context on FD infection. At field scale, altitude and cultivar choice were the main factors affecting FD infection. In particular, the odds ratio of FD infection in fields planted with the susceptible Cabernet Sauvignon, Cabernet Franc, or Muscadelle varieties were approximately twice those in fields planted with the less susceptible Merlot. Field infection was also affected by the field's immediate surroundings (within a circle with a radius of 150 to 200 m), corresponding to landscapes of 7 to 12 ha. In particular, the probability of FD infection increased with the proportions of forest and urban land and with the proportion of susceptible cultivars, demonstrating that the cultivar composition impacts FD epidemiology at landscape scale. The satisfactory predictive performance of the model for identifying districts with a prevalence of FD detection >10% of the fields suggests that it could be used to target areas in which future surveys would be most valuable.


Asunto(s)
Phytoplasma , Enfermedades de las Plantas , Vitis , Teorema de Bayes , Granjas , Francia , Phytoplasma/patogenicidad , Enfermedades de las Plantas/microbiología , Factores de Riesgo , Vitis/microbiología
8.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720515

RESUMEN

Multipartite viruses package their genomic segments independently and thus incur the risk of being unable to transmit their entire genome during host-to-host transmission if they undergo severe bottlenecks. In this paper, we estimated the bottleneck size during one infection cycle of Faba bean necrotic stunt virus (FBNSV), an octopartite nanovirus whose segments have been previously shown to converge to particular and unequal relative frequencies within host plants and aphid vectors. Two methods were used to derive this estimate, one based on the probability of transmission of the virus and the other based on the temporal evolution of the relative frequency of markers for two genomic segments, one frequent and one rare (segment N and S, respectively), both in plants and vectors. Our results show that FBNSV undergoes severe bottlenecks during aphid transmission. Further, even though the bottlenecks are always narrow under our experimental conditions, they slightly widen with the number of transmitting aphids. In particular, when several aphids are used for transmission, the bottleneck size of the segments is also affected by within-plant processes and, importantly, significantly differs across segments. These results indicate that genetic drift not only must be an important process affecting the evolution of these viruses but also that these effects vary across genomic segments and, thus, across viral genes, a rather unique and intriguing situation. We further discuss the potential consequences of our findings for the transmission of multipartite viruses.IMPORTANCE Multipartite viruses package their genomic segments in independent capsids. The most obvious cost of such genomic structure is the risk of losing at least one segment during host-to-host transmission. A theoretical study has shown that for nanoviruses, composed of 6 to 8 segments, hundreds of copies of each segment need to be transmitted to ensure that at least one copy of each segment was present in the host. These estimations seem to be very high compared to the size of the bottlenecks measured with other viruses. Here, we estimated the bottleneck size during one infection cycle of FBNSV, an octopartite nanovirus. We show that these bottlenecks are always narrow (few viral particles) and slightly widen with the number of transmitting aphids. These results contrast with theoretical predictions and illustrate the fact that a new conceptual framework is probably needed to understand the transmission of highly multipartite viruses.


Asunto(s)
Áfidos/virología , Insectos Vectores , Nanovirus/patogenicidad , Enfermedades de las Plantas/virología , Vicia faba/virología , Animales , ADN Viral/genética , Nanovirus/genética
9.
PLoS Pathog ; 13(11): e1006702, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29155894

RESUMEN

By combining high-throughput sequencing (HTS) with experimental evolution, we can observe the within-host dynamics of pathogen variants of biomedical or ecological interest. We studied the evolutionary dynamics of five variants of Potato virus Y (PVY) in 15 doubled-haploid lines of pepper. All plants were inoculated with the same mixture of virus variants and variant frequencies were determined by HTS in eight plants of each pepper line at each of six sampling dates. We developed a method for estimating the intensities of selection and genetic drift in a multi-allelic Wright-Fisher model, applicable whether these forces are strong or weak, and in the absence of neutral markers. This method requires variant frequency determination at several time points, in independent hosts. The parameters are the selection coefficients for each PVY variant and four effective population sizes Ne at different time-points of the experiment. Numerical simulations of asexual haploid Wright-Fisher populations subjected to contrasting genetic drift (Ne ∈ [10, 2000]) and selection (|s| ∈ [0, 0.15]) regimes were used to validate the method proposed. The experiment in closely related pepper host genotypes revealed that viruses experienced a considerable diversity of selection and genetic drift regimes. The resulting variant dynamics were accurately described by Wright-Fisher models. The fitness ranks of the variants were almost identical between host genotypes. By contrast, the dynamics of Ne were highly variable, although a bottleneck was often identified during the systemic movement of the virus. We demonstrated that, for a fixed initial PVY population, virus effective population size is a heritable trait in plants. These findings pave the way for the breeding of plant varieties exposing viruses to stronger genetic drift, thereby slowing virus adaptation.


Asunto(s)
Capsicum/virología , Enfermedades de las Plantas/virología , Potyvirus/genética , Evolución Molecular , Flujo Genético , Marcadores Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Potyvirus/fisiología , Selección Genética
10.
J Virol ; 91(16)2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28566384

RESUMEN

The invention of next-generation sequencing (NGS) techniques marked the coming of a new era in the detection of the genetic diversity of intrahost viral populations. A good understanding of the genetic structure of these populations requires, first, the ability to identify the different isolates or variants and, second, the ability to accurately quantify them. However, the initial amplification step of NGS studies can impose potential quantitative biases, modifying the variant relative frequencies. In particular, the number of target molecules (NTM) used during the amplification step is vastly overlooked although of primary importance, as it sets the limit of the accuracy and sensitivity of the sequencing procedure. In the present article, we investigated quantitative biases in an NGS study of populations of a multipartite single-stranded DNA (ssDNA) virus at different steps of the procedure. We studied 20 independent populations of the ssDNA virus faba bean necrotic stunt virus (FBNSV) in two host plants, Vicia faba and Medicago truncatula FBNSV is a multipartite virus composed of eight genomic segments, whose specific and host-dependent relative frequencies are defined as the "genome formula." Our results show a significant distortion of the FBNSV genome formula after the amplification and sequencing steps. We also quantified the genetic bottleneck occurring at the amplification step by documenting the NTM of two genomic segments of FBNSV. We argue that the NTM must be documented and carefully considered when determining the sensitivity and accuracy of data from NGS studies.IMPORTANCE The advent of next-generation sequencing (NGS) techniques now enables study of the genetic diversity of viral populations. A good understanding of the genetic structure of these populations first requires the ability to identify the different isolates or variants and second requires the ability to accurately quantify them. Prior to sequencing, viral genomes need to be amplified, a step that potentially imposes quantitative biases and modifies the viral population structure. In particular, the number of target molecules (NTM) used during the amplification step is of primary importance, as it sets the limit of the accuracy and sensitivity of the sequencing procedure. In this work, we used 20 replicated populations of the multipartite faba bean necrotic stunt virus (FBNSV) to estimate the various limitations of ultradeep-sequencing studies performed on intrahost viral populations. We report quantitative biases during rolling-circle amplification and the NTM of two genomic segments of FBNSV.

11.
J Gen Virol ; 98(4): 862-873, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28475036

RESUMEN

Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.


Asunto(s)
Especificidad del Huésped , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Plantas/virología , Genoma Viral , Fenotipo , Virus de Plantas/genética , Plantas/clasificación
12.
J Gen Virol ; 98(7): 1923-1931, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28691663

RESUMEN

Infection of plants by viruses is a complex process involving several steps: inoculation into plant cells, replication in inoculated cells and plant colonization. The success of the different steps depends, in part, on the viral effective population size (Ne), defined as the number of individuals passing their genes to the next generation. During infection, the virus population will undergo bottlenecks, leading to drastic reductions in Ne and, potentially, to the loss of the fittest variants. Therefore, it is crucial to better understand how plants affect Ne. We aimed to (i) identify the plant genetic factors controlling Ne during inoculation, (ii) understand the mechanisms used by the plant to control Ne and (iii) compare these genetic factors with the genes controlling plant resistance to viruses. Ne was measured in a doubled-haploid population of Capsicum annuum. Plants were inoculated with either a Potato virus Y (PVY) construct expressing the green fluorescent protein or a necrotic variant of Cucumber mosaic virus (CMV). Newas assessed by counting the number of primary infection foci on cotyledons for PVY or the number of necrotic local lesions on leaves for CMV. The number of foci and lesions was correlated (r=0.57) and showed a high heritability (h2=0.93 for PVY and h2=0.98 for CMV). The Ne of the two viruses was controlled by both common quantitative trait loci (QTLs) and virus-specific QTLs, indicating the contribution of general and specific mechanisms. The PVY-specific QTL colocalizes with a QTL that reduces PVY accumulation and the capacity to break down a major-effect resistance gene.


Asunto(s)
Capsicum/virología , Cucumovirus/fisiología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Capsicum/genética , Cucumovirus/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/virología , Potyvirus/genética , Sitios de Carácter Cuantitativo
13.
New Phytol ; 216(1): 239-253, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28776688

RESUMEN

The breakdown of plant virus resistance genes is a major issue in agriculture. We investigated whether a set of resistance genes would last longer when stacked into a single plant cultivar (pyramiding) or when deployed individually in regional mosaics (mosaic strategy). We modeled the genetic and epidemiological processes shaping the demogenetic dynamics of viruses under a multilocus gene-for-gene system, from the plant to landscape scales. The landscape consisted of many fields, was subject to seasonality, and of a reservoir hosting viruses year-round. Strategy performance depended principally on the fitness costs of adaptive mutations, epidemic intensity before resistance deployment and landscape connectivity. Mosaics were at least as good as pyramiding strategies in most production situations tested. Pyramiding strategies performed better only with slowly changing virus reservoir dynamics. Mosaics are more versatile than pyramiding strategies, and we found that deploying a mosaic of three to five resistance genes generally provided effective disease control, unless the epidemics were driven mostly by within-field infections. We considered the epidemiological and evolutionary mechanisms underlying the greater versatility of mosaics in our case study, with a view to providing breeders and growers with guidance as to the most appropriate deployment strategy.


Asunto(s)
Agricultura , Resistencia a la Enfermedad/genética , Genes de Plantas , Modelos Teóricos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Simulación por Computador , Interacciones Huésped-Patógeno/genética , Análisis de Regresión , Estaciones del Año
14.
PLoS Pathog ; 10(1): e1003833, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415934

RESUMEN

The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence.


Asunto(s)
Pisum sativum/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Potyvirus/fisiología , Semillas/virología
15.
J Virol ; 88(17): 9799-807, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942572

RESUMEN

UNLABELLED: The structural pattern of infectivity matrices, which contains infection data resulting from inoculations of a set of hosts by a set of parasites, is a key parameter for our understanding of biological interactions and their evolution. This pattern determines the evolution of parasite pathogenicity and host resistance, the spatiotemporal distribution of host and parasite genotypes, and the efficiency of disease control strategies. Two major patterns have been proposed for plant-virus genotype infectivity matrices. In the gene-for-gene model, infectivity matrices show a nested pattern, where the host ranges of specialist virus genotypes are subsets of the host ranges of less specialized viruses. In contrast, in the matching-allele (MA) model, each virus genotype is specialized to infect one (or a small set of) host genotype(s). The corresponding infectivity matrix shows a modular pattern where infection is frequent for plants and viruses belonging to the same module but rare for those belonging to different modules. We analyzed the structure of infectivity matrices between Potato virus Y (PVY) and plant genotypes in the family Solanaceae carrying different eukaryotic initiation factor 4E (eIF4E)-coding alleles conferring recessive resistance. Whereas this system corresponds mechanistically to an MA model, the expected modular pattern was rejected based on our experimental data. This was mostly because PVY mutations involved in adaptation to a particular plant genotype displayed frequent pleiotropic effects, conferring simultaneously an adaptation to additional plant genotypes with different eIF4E alleles. Such effects should be taken into account for the design of strategies of sustainable control of PVY through plant varietal mixtures or rotations. IMPORTANCE: The interaction pattern between host and virus genotypes has important consequences on their respective evolution and on issues regarding the application of disease control strategies. We found that the structure of the interaction between Potato virus Y (PVY) variants and host plants in the family Solanaceae departs significantly from the current model of interaction considered for these organisms because of frequent pleiotropic effects of virus mutations. These mutational effects allow the virus to expand rapidly its range of host plant genotypes, make it very difficult to predict the effects of mutations in PVY infectivity factors, and raise concerns about strategies of sustainable management of plant genetic resistance to viruses.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Especificidad del Huésped , Interacciones Huésped-Patógeno , Potyvirus/fisiología , Biosíntesis de Proteínas , Solanaceae/inmunología , Solanaceae/virología , Adaptación Biológica , Factor 4E Eucariótico de Iniciación/genética , Mutación , Potyvirus/genética , Solanaceae/metabolismo
16.
PLoS Pathog ; 8(4): e1002654, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532800

RESUMEN

Uncovering how natural selection and genetic drift shape the evolutionary dynamics of virus populations within their hosts can pave the way to a better understanding of virus emergence. Mathematical models already play a leading role in these studies and are intended to predict future emergences. Here, using high-throughput sequencing, we analyzed the within-host population dynamics of four Potato virus Y (PVY) variants differing at most by two substitutions involved in pathogenicity properties. Model selection procedures were used to compare experimental results to six hypotheses regarding competitiveness and intensity of genetic drift experienced by viruses during host plant colonization. Results indicated that the frequencies of variants were well described using Lotka-Volterra models where the competition coefficients ß(ij) exerted by variant j on variant i are equal to their fitness ratio, r(j)/r(i). Statistical inference allowed the estimation of the effect of each mutation on fitness, revealing slight (s = -0.45%) and high (s = -13.2%) fitness costs and a negative epistasis between them. Results also indicated that only 1 to 4 infectious units initiated the population of one apical leaf. The between-host variances of the variant frequencies were described using Dirichlet-multinomial distributions whose scale parameters, closely related to the fixation index F(ST), were shown to vary with time. The genetic differentiation of virus populations among plants increased from 0 to 10 days post-inoculation and then decreased until 35 days. Overall, this study showed that mathematical models can accurately describe both selection and genetic drift processes shaping the evolutionary dynamics of viruses within their hosts.


Asunto(s)
Capsicum/virología , Evolución Molecular , Modelos Biológicos , Nicotiana/virología , Enfermedades de las Plantas/virología , Potyvirus/fisiología
17.
Evol Appl ; 17(1): e13627, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283600

RESUMEN

Resistant cultivars are of value for protecting crops from disease, but can be rapidly overcome by pathogens. Several strategies have been proposed to delay pathogen adaptation (evolutionary control), while maintaining effective protection (epidemiological control). Resistance genes can be (i) combined in the same cultivar (pyramiding), (ii) deployed in different cultivars sown in the same field (mixtures) or in different fields (mosaics), or (iii) alternated over time (rotations). The outcomes of these strategies have been investigated principally in pathogens displaying pure clonal reproduction, but many pathogens have at least one sexual event in their annual life cycles. Sexual reproduction may promote the emergence of superpathogens adapted to all the resistance genes deployed. Here, we improved the spatially explicit stochastic model landsepi to include pathogen sexual reproduction, and we used the improved model to investigate the effect of sexual reproduction on evolutionary and epidemiological outcomes across deployment strategies for two major resistance genes. Sexual reproduction favours the establishment of a superpathogen when single mutant pathogens are present together at a sufficiently high frequency, as in mosaic and mixture strategies. However, sexual reproduction did not affect the strategy recommendations for a wide range of mutation probabilities, associated fitness costs, and landscape organisations.

18.
New Phytol ; 193(4): 1064-1075, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22260272

RESUMEN

The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from 'mixture' (where susceptible and resistant cultivars coexist) to 'pure' strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/virología , Modelos Biológicos , Resistencia a la Enfermedad/genética , Virus de Plantas/patogenicidad , Carga Viral
19.
Evol Appl ; 15(1): 95-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126650

RESUMEN

We have modeled the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age structure and genetic composition of the pathogen population. Each strain is characterized by pathogenicity traits determining its infection efficiency and a time-varying sporulation curve taking into account lesion aging. We first derived a general expression of the basic reproduction number R 0 for fungal pathogens in heterogeneous environments. We show that the evolutionary attractors of the model coincide with local maxima of R 0 only if the infection efficiency is the same on all host types. We then studied the contribution of three basic resistance characteristics (the pathogenicity trait targeted, resistance effectiveness, and adaptation cost), in interaction with the deployment strategy (proportion of fields sown with a resistant cultivar), to (i) pathogen diversification at equilibrium and (ii) the shaping of transient dynamics from evolutionary and epidemiological perspectives. We show that quantitative resistance affecting only the sporulation curve will always lead to a monomorphic population, whereas dimorphism (i.e., pathogen diversification) can occur if resistance alters infection efficiency, notably with high adaptation costs and proportions of the resistant cultivar. Accordingly, the choice of the quantitative resistance genes operated by plant breeders is a driver of pathogen diversification. From an evolutionary perspective, the time to emergence of the evolutionary attractor best adapted to the resistant cultivar tends to be shorter when resistance affects infection efficiency than when it affects sporulation. Conversely, from an epidemiological perspective, epidemiological control is always greater when the resistance affects infection efficiency. This highlights the difficulty of defining deployment strategies for quantitative resistance simultaneously maximizing epidemiological and evolutionary outcomes.

20.
Annu Rev Phytopathol ; 59: 125-152, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33929880

RESUMEN

Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Productos Agrícolas , Resistencia a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA