Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119773, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113789

RESUMEN

In this work, industrial Kambara reactor desulphurization slag (KR slag) was indirectly carbonated. The effects of leaching time, leaching temperature, leaching agent types, and leaching agent concentration on the leaching ratio of calcium from KR slag were investigated. Subsequently, precipitated calcium carbonate (PCC) was synthesized by bubbling CO2 gas (flow rate of 15 mL/min) into 400 mL leaching solutions at 40 °C for 120 min with magnetic stirring at 300 rpm. It is found that calcium in KR slag can be selectively extracted using a diluted solution of ammonium acetate (CH3COONH4) or ammonium chloride (NH4Cl), while ammonium sulfate ((NH4)2SO4) solution is not suitable as leaching agent due to the formation of slightly soluble calcium sulfate (CaSO4). The leaching ratio of calcium is improved by extending the leaching time or increasing the leaching solvent concentration. However, leaching temperature has little effect on calcium extraction. After carbonating the NH4Cl- and CH3COONH4-leachate for 120 min, calcite and vaterite type PCC with a purity of 99% is synthesized. Each gram of KR slag can produce 0.794 g and 0.803 g PCC using NH4Cl and CH3COONH4 leaching agents respectively. Calculations show that 349.6 kg CO2 is captured by per ton of KR slag. The CO2 capture capacity of KR slag is significantly higher compared with previously studied materials.


Asunto(s)
Carbonato de Calcio , Dióxido de Carbono , Residuos Industriales/análisis , Calcio , Carbonatos , Acero
2.
Inorg Chem ; 61(18): 7017-7025, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35467857

RESUMEN

The crystallization in glasses is a paradoxical phenomenon and scarcely investigated. This work explores the non-isothermal crystallization of a multicomponent alumino-borosilicate glass via in situ high-energy synchrotron X-ray diffraction, atomic pair distribution function, and Raman spectroscopy. Results depict the crystallization sequence as Ca3Al2O6 and CaSiO4 followed by LiAlO2 with the final compound formation of Ca3B2O6. These precipitations occur in a narrow temperature range and overlap, resulting in a single exothermic peak in the differential scanning calorimetry thermogram. The concurrent nucleation of Ca3Al2O6 and CaSiO4 is intermediated by their corresponding hydrates, which have dominantly short-range order. Moreover, the crystallization of LiAlO2 and Ca3B2O6 is strongly linked with the changes of structural units during the incubation stage in non-isothermal heating. These findings clarify the crystallization of multicomponent glass, which have been inferred from ex situ reports but never evidenced via in situ studies.

3.
Phys Chem Chem Phys ; 24(3): 1456-1461, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985487

RESUMEN

Non-metallic inclusions play a decisive role in the steel's performance. Therefore, their determination and control over their formation are crucial to engineer ultra-high-strength steel. Currently, bare experimental approaches are limited in the identification of non-metallic inclusions within microstructural phases of complex steel matrices. Herein, we performed a density functional theory study on the characteristics of different nitride inclusions as observed in spectro-microscopy studies. As per the simulations, TiN inclusions preferentially formed in the austenite matrix, while the ferrite matrix generally hosts BN inclusions. Furthermore, although the presence of both BN and TiN inclusions in the Fe3C matrix is possible, their formation is impeded because of the strong inclusion-carbon interactions. The observed regularity in the formation of nitride inclusions in different phases of steel was also confirmed by the comparison of simulated and experimental K-edge XAS spectrum of nitride inclusions. Our work shed the light on the formation of nitride inclusions in different steel matrices and facilitates their further experimental identification.

4.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998189

RESUMEN

This study investigated lignin as a reducing agent instead of fossil carbon for the reduction of zinc oxide and zinc ferrite contained in steelmaking dusts. Three types of dusts from different steelmaking processes were considered: ferrochrome converter (CRC), electric arc furnace stainless steel (EAFSS) and electric arc furnace carbon steel (EAFCS). Zinc is primarily found in zincite phases within CRC dust, while EAFSS and EAFCS dusts contain franklinite and zincite phases as Zn-bearing minerals. The proximate analysis of lignin showed that the fixed carbon content is 28.9%. Thermogravimetric (TG) analysis coupled with differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to study the reduction behavior of different mixtures of lignin and steel dusts under inert and air atmospheres. Simultaneously, the minimum ratio of lignin out of three different proportions required to achieve a complete reduction of franklinite and zincite phases into metallic zinc was identified. The results indicated that a 1.1 stoichiometric amount of lignin is sufficient for the complete reduction of zinc-bearing minerals into metallic zinc. In conclusion, lignin can be used efficiently for processing steelmaking dusts.

5.
Waste Manag ; 135: 158-166, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34509054

RESUMEN

A synergetic valorization method was proposed to convert the basic oxygen furnace (BOF) slag and stone coal into ferroalloy and glass-ceramic in this work. Effects of reduction time, temperature, and the mass ratio of BOF slag to stone coal on the reduction were studied. The reduction mechanism was investigated by in-situ observation and dissolution experiments. The effect of sintering temperature on the properties of glass-ceramics prepared from the final slag was further studied. The in-situ observation results indicate that the reduction reactions occurred mainly in the temperature range of 1673-1793 K. The reduction ratio of oxides and size of metal droplets can be improved by increasing reduction time, temperature, and decreasing stone coal addition. The recovered ferroalloys consisted of Fe, Mn, P, and V, which has the potential of returning to the steelmaking process or extracting vanadium. The modified final slag was suitable material for preparing glass-ceramic. Wollastonite-based glass-ceramic with a maximum bending strength of 95.83 MPa was prepared, which could be applied as abrasion-resistant and building decoration materials. Therefore, the present technological route can convert two kinds of industrial solid waste into two kinds of cleaner products and achieve the target of "zero waste".


Asunto(s)
Carbón Mineral , Oxígeno , Cerámica , Materiales de Construcción , Residuos Industriales/análisis
6.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947143

RESUMEN

A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions, there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents, hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth, extracting pure H2 from its compound is costly. Therefore, it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature, iron ore type (magnetite, hematite, goethite), H2/CO ratio, porosity, flow rate, the concentration of diluent (He, Ar, N2), gas utility, annealing before reduction, and pressure. In fact, increasing temperature, H2/CO ratio, hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition, the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared, concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.

7.
Sci Total Environ ; 712: 136208, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31931225

RESUMEN

Blast furnace slag from the steel industry is commercially utilized as a cement replacement material without major processing requirements; however, there are many unutilized steel production slags which differ considerably from the blast furnace slag in chemical and physical properties. In this study, calcium sulfoaluminate belite (CSAB) cement clinkers were produced using generally unutilized metallurgical industry residues: AOD (Argon Oxygen Decarburisation) slag from stainless steel production, Fe slag from zinc production, and fayalitic slag from nickel production. CSAB clinker with a target composition of ye'elimite-belite-ferrite was produced by firing raw materials at 1300 °C. The phase composition of the produced clinkers was identified using quantitative XRD analyses, and the chemical composition of the clinker phases produced was established using FESEM-EDS and mechanical properties were tested through compressive strength test. It is demonstrated that these metallurgical residues can be used successfully as alternative raw materials for the production of CSAB cement that can be used for special applications. In addition, it is shown that the available quantities of these side-streams are enough for significant replacement of virgin raw materials used in cement production.

8.
RSC Adv ; 10(40): 23959-23968, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35517350

RESUMEN

Recently, more attention has been paid to the use of microwave (MW) energy in accelerating chemical reactions. The effect of microwave energy on the reduction of zinc oxide and zinc ferrite was investigated. The results indicated that the temperatures required to initiate zinc oxide and zinc ferrite reduction under MW heating were 550 and 450 °C, respectively, while under conventional thermal (CT) heating, were 950 and 850 °C, respectively. Apparently, the MW reaction had a negative standard Gibbs free energy (ΔG) at a lower temperature (∼400 °C) when compared to the CT reaction. Additionally, the activation energy (E a) substantially decreased from 223.7 and 221.1 kJ mol-1 under CT heating to 64.8 and 32.9 kJ mol-1 under MW heating for Zn oxide and zinc ferrite, respectively. The enhancement in zinc reduction under MW energy was due to the rapid and bulk heating phenomena of MWs as well as the interactions occurring between the electromagnetic MW pattern and the molecules of heated materials.

9.
RSC Adv ; 9(12): 6859-6870, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35518455

RESUMEN

The microwave absorption properties of a material depend largely on the dielectric properties of the material being heated. Therefore, the influences of temperature on the dielectric constant (ε'), loss factor (ε''), loss tangent (tan δ d) and penetration depth (D P) of steelmaking dust at frequencies of 1064 MHz and 2423 MHz were measured. Three steelmaking dust samples were studied. The effects of temperature on the dielectric properties of the samples were insignificant at temperatures below 600 °C. However, above this temperature, a rapid rise in the values of the dielectric properties of the samples was observed. Comparing the thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) results and mass spectra (MS) of the dusts with their dielectric properties revealed that the changes in the dielectric values of the dusts were associated with the thermal decomposition of calcium carbonate and the release of CO/CO2 gases. Furthermore, the increase in the electrical conductivity of the samples at high temperature resulted in increased dielectric values. The behavior of the loss tangent of the samples with increasing temperature coincided with the behavior of the loss factor. The penetration depth decreased with an increase in temperature at both frequencies, while an increase in the dielectric properties caused a significant decrease in the penetration depth. The results indicated that steelmaking dusts have good microwave absorbing properties owing to their carbon and iron oxide contents.

10.
R Soc Open Sci ; 4(9): 170710, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989772

RESUMEN

This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min.

11.
Appl Spectrosc ; 68(1): 26-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24405950

RESUMEN

Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA