Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 150(6): 1209-22, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980981

RESUMEN

During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Análisis de la Célula Individual , Transcriptoma , Animales , Línea Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias , Fibroblastos/citología , Fibroblastos/metabolismo , Marcadores Genéticos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones , Técnicas Analíticas Microfluídicas , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo
2.
Nat Rev Genet ; 14(6): 427-39, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23681063

RESUMEN

Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.


Asunto(s)
Epigénesis Genética , Células Madre/fisiología , Animales , Diferenciación Celular , Cromatina/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Biológicos , Proteínas Proto-Oncogénicas c-myc/fisiología , Análisis de la Célula Individual , Factores de Transcripción/fisiología
3.
Nat Methods ; 11(5): 549-551, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681693

RESUMEN

We have developed a quantitative technique for sorting cells on the basis of endogenous RNA abundance, with a molecular resolution of 10-20 transcripts. We demonstrate efficient and unbiased RNA extraction from transcriptionally sorted cells and report a high-fidelity transcriptome measurement of mouse induced pluripotent stem cells (iPSCs) isolated from a heterogeneous reprogramming culture. This method is broadly applicable to profiling transcriptionally distinct cellular states without requiring antibodies or transgenic fluorescent proteins.


Asunto(s)
Técnicas de Cultivo de Célula , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , ARN/metabolismo , Transcripción Genética , Alelos , Animales , Reprogramación Celular , Doxiciclina/química , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Citometría de Flujo , Estudio de Asociación del Genoma Completo , Proteínas Fluorescentes Verdes/metabolismo , Hibridación Fluorescente in Situ , Ratones , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Transgenes
4.
Stem Cell Reports ; 18(11): 2174-2189, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37832543

RESUMEN

A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.


Asunto(s)
Metilación de ADN , Células Madre Pluripotentes Inducidas , Metilación de ADN/genética , Reprogramación Celular/genética , Haploinsuficiencia , Fibroblastos/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo
5.
Stem Cells ; 29(6): 992-1000, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21563275

RESUMEN

Pluripotent cells can be derived from different types of somatic cells by nuclear reprogramming through the ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc. However, it is unclear whether postmitotic neurons are susceptible to direct reprogramming. Here, we show that postnatal cortical neurons, the vast majority of which are postmitotic, are amenable to epigenetic reprogramming. However, ectopic expression of the four canonical reprogramming factors is not sufficient to reprogram postnatal neurons. Efficient reprogramming was only achieved after forced cell proliferation by p53 suppression. Additionally, overexpression of repressor element-1 silencing transcription, a suppressor of neuronal gene activity, increased reprogramming efficiencies in combination with the reprogramming factors. Our findings indicate that terminally differentiated postnatal neurons are able to acquire the pluripotent state by direct epigenetic reprogramming, and this process is made more efficient through the suppression of lineage specific gene expression.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Blastocisto/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Transferencia de Embrión , Fibroblastos/citología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Factor 4 Similar a Kruppel , Antígeno Lewis X/metabolismo , Ratones , Proteína Homeótica Nanog , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Teratoma/patología , Quimera por Trasplante
6.
PLoS Genet ; 5(6): e1000502, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19503594

RESUMEN

High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism.


Asunto(s)
Elementos Transponibles de ADN/genética , Polimorfismo Genético/genética , Saccharomyces cerevisiae/genética , Hibridación Genómica Comparativa , ADN de Hongos , Dosificación de Gen , Genoma Fúngico , Modelos Genéticos
7.
Proc Natl Acad Sci U S A ; 105(41): 15902-7, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18838683

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is the most dramatic form of human premature aging. Death occurs at a mean age of 13 years, usually from heart attack or stroke. Almost all cases of HGPS are caused by a de novo point mutation in the lamin A (LMNA) gene that results in production of a mutant lamin A protein termed progerin. This protein is permanently modified by a lipid farnesyl group, and acts as a dominant negative, disrupting nuclear structure. Treatment with farnesyltransferase inhibitors (FTIs) has been shown to prevent and even reverse this nuclear abnormality in cultured HGPS fibroblasts. We have previously created a mouse model of HGPS that shows progressive loss of vascular smooth muscle cells in the media of the large arteries, in a pattern that is strikingly similar to the cardiovascular disease seen in patients with HGPS. Here we show that the dose-dependent administration of the FTI tipifarnib (R115777, Zarnestra) to this HGPS mouse model can significantly prevent both the onset of the cardiovascular phenotype as well as the late progression of existing cardiovascular disease. These observations provide encouraging evidence for the current clinical trial of FTIs for this rare and devastating disease.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Progeria/complicaciones , Animales , Enfermedades Cardiovasculares/etiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/uso terapéutico , Ratones , Progeria/tratamiento farmacológico , Quinolonas/farmacología , Quinolonas/uso terapéutico
8.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164753

RESUMEN

Respiratory failure associated with COVID-19 has placed focus on the lungs. Here, we present single-nucleus accessible chromatin profiles of 90,980 nuclei and matched single-nucleus transcriptomes of 46,500 nuclei in non-diseased lungs from donors of ~30 weeks gestation,~3 years and ~30 years. We mapped candidate cis-regulatory elements (cCREs) and linked them to putative target genes. We identified distal cCREs with age-increased activity linked to SARS-CoV-2 host entry gene TMPRSS2 in alveolar type 2 cells, which had immune regulatory signatures and harbored variants associated with respiratory traits. At the 3p21.31 COVID-19 risk locus, a candidate variant overlapped a distal cCRE linked to SLC6A20, a gene expressed in alveolar cells and with known functional association with the SARS-CoV-2 receptor ACE2. Our findings provide insight into regulatory logic underlying genes implicated in COVID-19 in individual lung cell types across age. More broadly, these datasets will facilitate interpretation of risk loci for lung diseases.


Asunto(s)
COVID-19/genética , COVID-19/virología , Interacciones Microbiota-Huesped/genética , Pulmón/metabolismo , Pulmón/virología , Adulto , Factores de Edad , Células Epiteliales Alveolares/clasificación , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Preescolar , Mapeo Cromosómico , Perfilación de la Expresión Génica , Variación Genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Recién Nacido , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pandemias , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Internalización del Virus
9.
Cell Stem Cell ; 15(4): 471-487, 2014 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-25090446

RESUMEN

Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, "naive" state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Supervivencia Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Transgenes
10.
Cell Stem Cell ; 15(3): 295-309, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25192464

RESUMEN

Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Quimera , Cromosomas Humanos Par 8/genética , Metilación de ADN/genética , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Genoma/genética , Histonas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trisomía/genética
11.
Cell Stem Cell ; 13(1): 23-9, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827708

RESUMEN

The homeodomain transcription factor Nanog is a central part of the core pluripotency transcriptional network and plays a critical role in embryonic stem cell (ESC) self-renewal. Several reports have suggested that Nanog expression is allelically regulated and that transient downregulation of Nanog in a subset of pluripotent cells predisposes them toward differentiation. Using single-cell gene expression analyses combined with different reporters for the two alleles of Nanog, we show that Nanog is biallelically expressed in ESCs independently of culture condition. We also show that the overall variation in endogenous Nanog expression in ESCs is very similar to that of several other pluripotency markers. Our analysis suggests that reporter-based studies of gene expression in pluripotent cells can be significantly influenced by the gene-targeting strategy and genetic background employed.


Asunto(s)
Biomarcadores/análisis , Células Madre Embrionarias/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Citometría de Flujo , Proteínas de Homeodominio/genética , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , ARN Mensajero/genética , Proteína Fluorescente Roja
12.
J Clin Invest ; 121(7): 2833-44, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21670498

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease, is caused by a point mutation in the lamin A gene (LMNA). This mutation constitutively activates a cryptic splice donor site, resulting in a mutant lamin A protein known as progerin. Recent studies have demonstrated that progerin is also produced at low levels in normal human cells and tissues. However, the cause-and-effect relationship between normal aging and progerin production in normal individuals has not yet been determined. In this study, we have shown in normal human fibroblasts that progressive telomere damage during cellular senescence plays a causative role in activating progerin production. Progressive telomere damage was also found to lead to extensive changes in alternative splicing in multiple other genes. Interestingly, elevated progerin production was not seen during cellular senescence that does not entail telomere shortening. Taken together, our results suggest a synergistic relationship between telomere dysfunction and progerin production during the induction of cell senescence, providing mechanistic insight into how progerin may participate in the normal aging process.


Asunto(s)
Senescencia Celular/fisiología , Fibroblastos/fisiología , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Telómero/metabolismo , Envejecimiento/fisiología , Animales , Células Cultivadas , Fibroblastos/citología , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Nucleares/genética , Progeria/genética , Progeria/fisiopatología , Precursores de Proteínas/genética , Telomerasa/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética
13.
Cell Stem Cell ; 9(6): 588-98, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22136932

RESUMEN

We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pluripotency of iPS cells. High expression of Oct4 and Klf4 combined with lower expression of c-Myc and Sox2 produced iPS cells that efficiently generated "all-iPSC mice" by tetraploid (4n) complementation, maintained normal imprinting at the Dlk1-Dio3 locus, and did not create mice with tumors. Loss of imprinting (LOI) at the Dlk1-Dio3 locus did not strictly correlate with reduced pluripotency though the efficiency of generating "all-iPSC mice" was diminished. Our data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells. This concept complicates efforts to define a "generic" epigenetic state of iPSCs and ESCs and should be considered when comparing different iPS and ES cell lines.


Asunto(s)
Reprogramación Celular/fisiología , Epigénesis Genética , Células Madre Pluripotentes Inducidas/fisiología , Animales , Biomarcadores/metabolismo , Línea Celular , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA