Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 32(30)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33873166

RESUMEN

In GaN-based light-emitting diodes (LEDs), tunnel junctions offer a way of replacing the highly resistive p-type GaN (p-GaN) ohmic contact with a low-resistance n-GaN ohmic contact. However, the p-GaN would be re-passivated by hydrogen atoms during the subsequent growth of n-GaN in a metal-organic chemical vapor deposition (MOCVD) chamber. The n-GaN layer, acting as a hydrogen diffusion barrier, hinders the thermal activation of the underlying p-GaN. Here, we report a method to thermally activate the buried p-GaN in tunnel junction LED (TJ-LED) through vertically aligned nanopipe arrays across the top n-GaN layer, which provides a hydrogen outgassing passage. The fabrication of nanopipes is realized via inductive coupled plasma etching using a mask prepared by self-assembled nanosphere arrays. As a result, we attain large-size TJ-LED chips, exhibiting nearly equivalent p-GaN activation and superior light extraction compared to conventional LEDs. Specifically, the light extraction efficiency is boosted by 44% relative to conventional LEDs at an injection current density of 100 A cm-2.

2.
Phys Chem Chem Phys ; 19(43): 29653-29659, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29085927

RESUMEN

The addition of a co-catalyst onto the surface of a photocathode often greatly enhances the harvested photovoltage of the system. However, the true nature of how the catalyst improves the onset potential remains poorly understood. As a result, how to best utilize effective co-catalysts is still a limiting factor in achieving high performance earth abundant photoelectrochemical hydrogen evolution. Using intensity modulated photocurrent spectroscopy (IMPS), we have probed charge behaviors at the photoelectrode co-catalyst interface. We find that Pt drastically reduces charge recombination at the semiconductor liquid interface (SCLI). Further studies reveal that the onset potentials can be improved either by accelerating the reaction kinetics or reducing the recombination at the SCLI. The knowledge permits us to understand how earth abundant HER catalysts, such as CoP, behave at the SCLI. It is found that CoP is more effective at accelerating the reaction kinetics than reducing recombination.

3.
Chemistry ; 22(26): 8809-13, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27128407

RESUMEN

A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

4.
Nano Lett ; 15(4): 2721-6, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25811636

RESUMEN

H2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers. Here, by exploiting the lateral carrier extraction scheme of one-dimensional nanowire structures, we have demonstrated that a dual absorber photocathode, consisting of p-InGaN/tunnel junction/n-GaN nanowire arrays and a Si solar cell wafer, can operate efficiently without the strict current matching requirement. The monolithically integrated photocathode exhibits an applied bias photon-to-current efficiency of 8.7% at a potential of 0.33 V versus normal hydrogen electrode and nearly unity Faradaic efficiency for H2 generation. Such an adaptive multijunction architecture can surpass the design and performance restrictions of conventional tandem photoelectrodes.

5.
Angew Chem Int Ed Engl ; 55(46): 14262-14266, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27739625

RESUMEN

Syngas, the mixture of CO and H2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H2 ratio of 1:2 could be attained from photoelectrochemical CO2 and H2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone.

6.
J Am Chem Soc ; 136(22): 7793-6, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24826797

RESUMEN

As a class of key building blocks in the chemical industry, aromatic compounds are mainly derived from the catalytic reforming of petroleum-based long chain hydrocarbons. The dehydroaromatization of methane can also be achieved by using zeolitic catalysts under relatively high temperature. Herein we demonstrate that Si-doped GaN nanowires (NWs) with a 97% rationally constructed m-plane can directly convert methane into benzene and molecular hydrogen under ultraviolet (UV) illumination at rt. Mechanistic studies suggest that the exposed m-plane of GaN exhibited particularly high activity toward methane C-H bond activation and the quantum efficiency increased linearly as a function of light intensity. The incorporation of a Si-donor or Mg-acceptor dopants into GaN also has a large influence on the photocatalytic performance.

7.
Angew Chem Int Ed Engl ; 53(51): 14106-9, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25336448

RESUMEN

The thermal catalytic activity of GaN in non-oxidative alkane dehydroaromatization has been discovered for the first time. The origin of the catalytic activity was studied experimentally and theoretically. Commercially available GaN powders with a wurtzite crystal structure showed superior stability and reactivity for converting light alkanes, including methane, propane, n-butane, n-hexane and cyclohexane into benzene at an elevated temperature with high selectivity. The catalyst is highly robust and can be used repeatedly without noticeable deactivation.

8.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34835855

RESUMEN

This letter reports room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diodes. Unlike conventional distributed Bragg feedback laser diodes with hundreds of gratings, we employed only a few precisely defined slot gratings to narrow the linewidth and mitigate the negative effects of grating fabrication on the device performance. The slot gratings were incorporated into the ridge of conventional Fabry-Pérot cavity laser diodes. A subsequent wet etching in a tetramethyl ammonium hydroxide solution not only effectively removed the damages induced by the dry etching, but also converted the rough and tilted slot sidewalls into smooth and vertical ones. As a result, the threshold current was reduced by over 20%, and the reverse leakage current was decreased by over three orders of magnitude. Therefore, the room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diode has been successfully demonstrated.

9.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28464392

RESUMEN

Solar rechargeable battery combines the advantages of photoelectrochemical devices and batteries and has emerged as an attractive alternative to artificial photosynthesis for large-scale solar energy harvesting and storage. Due to the low photovoltages by the photoelectrodes, however, most previous demonstrations of unassisted photocharge have been realized on systems with low open circuit potentials (<0.8 V). In response to this critical challenge, here it is shown that the combined photovoltages exceeding 1.4 V can be obtained using a Ta3 N5 nanotube photoanode and a GaN nanowire/Si photocathode with high photocurrents (>5 mA cm-2 ). The photoelectrode system makes it possible to operate a 1.2 V alkaline anthraquinone/ferrocyanide redox battery with a high ideal solar-to-chemical conversion efficiency of 3.0% without externally applied potentials. Importantly, the photocharged battery is successfully discharged with a high voltage output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA