Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38487846

RESUMEN

Beneficial bacteria remain largely unexplored. Lacking systematic methods, understanding probiotic community traits becomes challenging, leading to various conclusions about their probiotic effects among different publications. We developed language model-based metaProbiotics to rapidly detect probiotic bins from metagenomes, demonstrating superior performance in simulated benchmark datasets. Testing on gut metagenomes from probiotic-treated individuals, it revealed the probioticity of intervention strains-derived bins and other probiotic-associated bins beyond the training data, such as a plasmid-like bin. Analyses of these bins revealed various probiotic mechanisms and bai operon as probiotic Ruminococcaceae's potential marker. In different health-disease cohorts, these bins were more common in healthy individuals, signifying their probiotic role, but relevant health predictions based on the abundance profiles of these bins faced cross-disease challenges. To better understand the heterogeneous nature of probiotics, we used metaProbiotics to construct a comprehensive probiotic genome set from global gut metagenomic data. Module analysis of this set shows that diseased individuals often lack certain probiotic gene modules, with significant variation of the missing modules across different diseases. Additionally, different gene modules on the same probiotic have heterogeneous effects on various diseases. We thus believe that gene function integrity of the probiotic community is more crucial in maintaining gut homeostasis than merely increasing specific gene abundance, and adding probiotics indiscriminately might not boost health. We expect that the innovative language model-based metaProbiotics tool will promote novel probiotic discovery using large-scale metagenomic data and facilitate systematic research on bacterial probiotic effects. The metaProbiotics program can be freely downloaded at https://github.com/zhenchengfang/metaProbiotics.


Asunto(s)
Metagenoma , Probióticos , Humanos , Algoritmos , Metagenómica/métodos , Bacterias/genética , Lenguaje
2.
Bioinformatics ; 38(2): 543-545, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34383025

RESUMEN

SUMMARY: We present HoPhage (Host of Phage) to identify the host of a given phage fragment from metavirome data at the genus level. HoPhage integrates two modules using a deep learning algorithm and a Markov chain model, respectively. HoPhage achieves 47.90% and 82.47% mean accuracy at the genus and phylum levels for ∼1-kb long artificial phage fragments when predicting host among 50 genera, representing 7.54-20.22% and 13.55-24.31% improvement, respectively. By testing on three real virome samples, HoPhage yields 81.11% mean accuracy at the genus level within a much broader candidate host range. AVAILABILITY AND IMPLEMENTATION: HoPhage is available at http://cqb.pku.edu.cn/ZhuLab/HoPhage/data/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacteriófagos , Algoritmos , Cadenas de Markov , Programas Informáticos
3.
Bioinformatics ; 36(10): 3239-3241, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32091572

RESUMEN

SUMMARY: We present the first tool of gene prediction, PlasGUN, for plasmid metagenomic short-read data. The tool, developed based on deep learning algorithm of multiple input Convolutional Neural Network, demonstrates much better performance when tested on a benchmark dataset of artificial short reads and presents more reliable results for real plasmid metagenomic data than traditional gene prediction tools designed primarily for chromosome-derived short reads. AVAILABILITY AND IMPLEMENTATION: The PlasGUN software is available at http://cqb.pku.edu.cn/ZhuLab/PlasGUN/ or https://github.com/zhenchengfang/PlasGUN/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Algoritmos , Metagenoma , Redes Neurales de la Computación , Plásmidos
4.
Imeta ; 3(2): e182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882487

RESUMEN

The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.

5.
Gigascience ; 112022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950840

RESUMEN

BACKGROUND: Many biological properties of phages are determined by phage virion proteins (PVPs), and the poor annotation of PVPs is a bottleneck for many areas of viral research, such as viral phylogenetic analysis, viral host identification, and antibacterial drug design. Because of the high diversity of PVP sequences, the PVP annotation of a phage genome remains a particularly challenging bioinformatic task. FINDINGS: Based on deep learning, we developed DeePVP. The main module of DeePVP aims to discriminate PVPs from non-PVPs within a phage genome, while the extended module of DeePVP can further classify predicted PVPs into the 10 major classes of PVPs. Compared with the present state-of-the-art tools, the main module of DeePVP performs better, with a 9.05% higher F1-score in the PVP identification task. Moreover, the overall accuracy of the extended module of DeePVP in the PVP classification task is approximately 3.72% higher than that of PhANNs. Two application cases show that the predictions of DeePVP are more reliable and can better reveal the compact PVP-enriched region than the current state-of-the-art tools. Particularly, in the Escherichia phage phiEC1 genome, a novel PVP-enriched region that is conserved in many other Escherichia phage genomes was identified, indicating that DeePVP will be a useful tool for the analysis of phage genomic structures. CONCLUSIONS: DeePVP outperforms state-of-the-art tools. The program is optimized in both a virtual machine with graphical user interface and a docker so that the tool can be easily run by noncomputer professionals. DeePVP is freely available at https://github.com/fangzcbio/DeePVP/.


Asunto(s)
Bacteriófagos , Aprendizaje Profundo , Bacteriófagos/genética , Biología Computacional , Genoma Viral , Filogenia , Virión/genética
6.
Front Cell Infect Microbiol ; 12: 846063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493727

RESUMEN

Viruses are increasingly viewed as vital components of the human gut microbiota, while their roles in health and diseases remain incompletely understood. Here, we first sequenced and analyzed the 37 metagenomic and 18 host metabolomic samples related to irritable bowel syndrome (IBS) and found that some shifted viruses between IBS and controls covaried with shifted bacteria and metabolites. Especially, phages that infect beneficial lactic acid bacteria depleted in IBS covaried with their hosts. We also retrieved public whole-genome metagenomic datasets of another four diseases (type 2 diabetes, Crohn's disease, colorectal cancer, and liver cirrhosis), totaling 438 samples including IBS, and performed uniform analysis of the gut viruses in diseases. By constructing disease-specific co-occurrence networks, we found viruses actively interacting with bacteria, negatively correlated with possible dysbiosis-related and inflammation-mediating bacteria, increasing the connectivity between bacteria modules, and contributing to the robustness of the networks. Functional enrichment analysis showed that phages interact with bacteria through predation or expressing genes involved in the transporter and secretion system, metabolic enzymes, etc. We further built a viral database to facilitate systematic functional classification and explored the functions of viral genes on interacting with bacteria. Our analyses provided a systematic view of the gut virome in the disease-related microbial community and suggested possible positive roles of viruses concerning gut health.


Asunto(s)
Bacteriófagos , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Microbiota , Virus , Bacterias/genética , Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Humanos , Viroma/genética , Virus/genética
7.
J Vis Exp ; (175)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34633370

RESUMEN

A variety of biological sequence classification tasks, such as species classification, gene function classification and viral host classification, are expected processes in many metagenomic data analyses. Since metagenomic data contain a large number of novel species and genes, high-performing classification algorithms are needed in many studies. Biologists often encounter challenges in finding suitable sequence classification and annotation tools for a specific task and are often not able to construct a corresponding algorithm on their own because of a lack of the necessary mathematical and computational knowledge. Deep learning techniques have recently become a popular topic and show strong advantages in many classification tasks. To date, many highly packaged deep learning packages, which make it possible for biologists to construct deep learning frameworks according to their own needs without in-depth knowledge of the algorithm details, have been developed. In this tutorial, we provide a guideline for constructing an easy-to-use deep learning framework for sequence classification without the need for sufficient mathematical knowledge or programming skills. All the code is optimized in a virtual machine so that users can directly run the code using their own data.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Humanos , Metagenoma , Metagenómica
8.
Front Microbiol ; 12: 615711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613485

RESUMEN

Viruses are some of the most abundant biological entities on Earth, and prokaryote virus are the dominant members of the viral community. Because of the diversity of prokaryote virus, functional annotation cannot be performed on a large number of genes from newly discovered prokaryote virus by searching the current database; therefore, the development of an alignment-free algorithm for functional annotation of prokaryote virus proteins is important to understand the viral community. The identification of prokaryote virus proteins (PVVPs) is a critical step for many viral analyses, such as species classification, phylogenetic analysis and the exploration of how prokaryote virus interact with their hosts. Although a series of PVVP prediction tools have been developed, the performance of these tools is still not satisfactory. Moreover, viral metagenomic data contains fragmented sequences, leading to the existence of some incomplete genes. Therefore, a tool that can identify partial prokaryote virus proteins is also needed. In this work, we present a novel algorithm, called VirionFinder, to identify the complete and partial PVVPs from non-prokaryote virus virion proteins (non-PVVPs). VirionFinder uses the sequence and biochemical properties of 20 amino acids as the mathematical model to encode the protein sequences and uses a deep learning technique to identify whether a given protein is a PVVP. Compared with the state-of-the-art tools using artificial benchmark datasets, the results show that under the same specificity (Sp), the sensitivity (Sn) of VirionFinder is approximately 10-34% much higher than the Sn of these tools on both complete and partial proteins. When evaluating related tools using real virome data, the recognition rate of PVVP-like sequences of VirionFinder is also much higher than that of the other tools. We expect that VirionFinder will be a powerful tool for identifying novel virion proteins from both complete prokaryote virus genomes and viral metagenomic data. VirionFinder is freely available at https://github.com/zhenchengfang/VirionFinder.

10.
Gigascience ; 10(9)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34498685

RESUMEN

BACKGROUND: Prokaryotic viruses referred to as phages can be divided into virulent and temperate phages. Distinguishing virulent and temperate phage-derived sequences in metavirome data is important for elucidating their different roles in interactions with bacterial hosts and regulation of microbial communities. However, there is no experimental or computational approach to effectively classify their sequences in culture-independent metavirome. We present a new computational method, DeePhage, which can directly and rapidly judge each read or contig as a virulent or temperate phage-derived fragment. FINDINGS: DeePhage uses a "one-hot" encoding form to represent DNA sequences in detail. Sequence signatures are detected via a convolutional neural network to obtain valuable local features. The accuracy of DeePhage on 5-fold cross-validation reaches as high as 89%, nearly 10% and 30% higher than that of 2 similar tools, PhagePred and PHACTS. On real metavirome, DeePhage correctly predicts the highest proportion of contigs when using BLAST as annotation, without apparent preferences. Besides, DeePhage reduces running time vs PhagePred and PHACTS by 245 and 810 times, respectively, under the same computational configuration. By direct detection of the temperate viral fragments from metagenome and metavirome, we furthermore propose a new strategy to explore phage transformations in the microbial community. The ability to detect such transformations provides us a new insight into the potential treatment for human disease. CONCLUSIONS: DeePhage is a novel tool developed to rapidly and efficiently identify 2 kinds of phage fragments especially for metagenomics analysis. DeePhage is freely available via http://cqb.pku.edu.cn/ZhuLab/DeePhage or https://github.com/shufangwu/DeePhage.


Asunto(s)
Bacteriófagos , Aprendizaje Profundo , Microbiota , Bacteriófagos/genética , Humanos , Metagenoma , Metagenómica/métodos
11.
Sci Rep ; 11(1): 17422, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465838

RESUMEN

The SARS-CoV-2 pandemic has raised concerns in the identification of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on five host types, including plant, germ, invertebrate, non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the five-classification, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fill the gap in the efficient inference of host species for SARS-CoV-2 using existing tools, we conducted a deep analysis on the host likelihood profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID-19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS-CoV-2, while minks might be one of the most noteworthy hosts. Several genes of SARS-CoV-2 demonstrated their significance in determining the host range. Furthermore, a large-scale genome analysis, based on DeepHoF's computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples and the strong association of SARS-CoV-2 between humans and minks.


Asunto(s)
COVID-19/virología , Gatos/virología , Quirópteros/virología , Perros/virología , Visón/virología , SARS-CoV-2/clasificación , Algoritmos , Animales , COVID-19/transmisión , Aprendizaje Profundo , Especificidad del Huésped , Humanos , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN
12.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33074084

RESUMEN

Plasmids are the key element in horizontal gene transfer in the microbial community. Recently, a large number of experimental and computational methods have been developed to obtain the plasmidomes of microbial communities. Distinguishing transmissible plasmid sequences, which are derived from conjugative or at least mobilizable plasmids, from non-transmissible plasmid sequences in the plasmidome is essential for understanding the diversity of plasmids and how they regulate the microbial community. Unfortunately, due to the highly fragmented characteristics of DNA sequences in the plasmidome, effective identification methods are lacking. In this work, we used information entropy from information theory to assess the randomness of synonymous codon usage over 4424 plasmid genomes. The results showed that for all amino acids, the choice of a synonymous codon in conjugative and mobilizable plasmids is more random than that in non-transmissible plasmids, indicating that transmissible plasmids have different sequence signatures from non-transmissible plasmids. Inspired by this phenomenon, we further developed a novel algorithm named PlasTrans. PlasTrans takes the triplet code sequences and base sequences of plasmid DNA fragments as input and uses the convolutional neural network of the deep learning technique to further extract the more complex signatures of the plasmid sequences and identify the conjugative and mobilizable DNA fragments. Tests showed that PlasTrans could achieve an AUC of as high as 84-91%, even though the fragments only contained hundreds of base pairs. To the best of our knowledge, this is the first quantitative analysis of the difference in sequence signatures between transmissible and non-transmissible plasmids, and we developed the first tool to perform transferability annotation for DNA fragments in the plasmidome. We expect that PlasTrans will be a useful tool for researchers who analyse the properties of novel plasmids in the microbial community and horizontal gene transfer, especially the spread of resistance genes and virulence factors associated with plasmids. PlasTrans is freely available via https://github.com/zhenchengfang/PlasTrans.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Transferencia de Gen Horizontal/genética , Plásmidos/genética , Secuencia de Bases/genética , ADN Bacteriano/genética , Genoma Bacteriano/genética , Microbiota/genética , Análisis de Secuencia de ADN
13.
Gigascience ; 8(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220250

RESUMEN

BACKGROUND: Phages and plasmids are the major components of mobile genetic elements, and fragments from such elements generally co-exist with chromosome-derived fragments in sequenced metagenomic data. However, there is a lack of efficient methods that can simultaneously identify phages and plasmids in metagenomic data, and the existing tools identifying either phages or plasmids have not yet presented satisfactory performance. FINDINGS: We present PPR-Meta, a 3-class classifier that allows simultaneous identification of both phage and plasmid fragments from metagenomic assemblies. PPR-Meta consists of several modules for predicting sequences of different lengths. Using deep learning, a novel network architecture, referred to as the Bi-path Convolutional Neural Network, is designed to improve the performance for short fragments. PPR-Meta demonstrates much better performance than currently available similar tools individually for phage or plasmid identification, while testing on both artificial contigs and real metagenomic data. PPR-Meta is freely available via http://cqb.pku.edu.cn/ZhuLab/PPR_Meta or https://github.com/zhenchengfang/PPR-Meta. CONCLUSIONS: To the best of our knowledge, PPR-Meta is the first tool that can simultaneously identify phage and plasmid fragments efficiently and reliably. The software is optimized and can be easily run on a local PC by non-computer professionals. We developed PPR-Meta to promote the research on mobile genetic elements and horizontal gene transfer.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Aprendizaje Profundo , Metagenómica/métodos , Plásmidos/aislamiento & purificación , Programas Informáticos , Bacteriófagos/genética , Metagenoma , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA