Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 52(10): 5912-5927, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742632

RESUMEN

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.


Asunto(s)
ADN de Cadena Simple , Proteínas de Unión al ADN , Mutación , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
2.
Hum Mol Genet ; 28(7): 1090-1099, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496414

RESUMEN

TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/ultraestructura , Oftalmoplejía Externa Progresiva Crónica/genética , Secuencia de Aminoácidos , ADN Primasa , ADN Mitocondrial/genética , ADN Mitocondrial/fisiología , Humanos , Microscopía Electrónica/métodos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación/genética , Dominios Proteicos/genética
3.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195723

RESUMEN

As with all organisms that must organize and condense their DNA to fit within the limited volume of a cell or a nucleus, mammalian mitochondrial DNA (mtDNA) is packaged into nucleoprotein structures called nucleoids. In this study, we first introduce the general modes of DNA compaction, especially the role of the nucleoid-associated proteins (NAPs) that structure the bacterial chromosome. We then present the mitochondrial nucleoid and the main factors responsible for packaging of mtDNA: ARS- (autonomously replicating sequence-) binding factor 2 protein (Abf2p) in yeast and mitochondrial transcription factor A (TFAM) in mammals. We summarize the single-molecule manipulation experiments on mtDNA compaction and visualization of mitochondrial nucleoids that have led to our current knowledge on mtDNA compaction. Lastly, we discuss the possible regulatory role of DNA packaging by TFAM in DNA transactions such as mtDNA replication and transcription.


Asunto(s)
ADN Mitocondrial/genética , Mamíferos/genética , Animales , Replicación del ADN/genética , ADN Mitocondrial/química , Humanos , Proteínas Mitocondriales/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética
5.
Nat Methods ; 10(9): 910-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23934077

RESUMEN

Dense coverage of DNA by proteins is a ubiquitous feature of cellular processes such as DNA organization, replication and repair. We present a single-molecule approach capable of visualizing individual DNA-binding proteins on densely covered DNA and in the presence of high protein concentrations. Our approach combines optical tweezers with multicolor confocal and stimulated emission depletion (STED) fluorescence microscopy. Proteins on DNA are visualized at a resolution of 50 nm, a sixfold resolution improvement over that of confocal microscopy. High temporal resolution (<50 ms) is ensured by fast one-dimensional beam scanning. Individual trajectories of proteins translocating on DNA can thus be distinguished and tracked with high precision. We demonstrate our multimodal approach by visualizing the assembly of dense nucleoprotein filaments with unprecedented spatial resolution in real time. Experimental access to the force-dependent kinetics and motility of DNA-associating proteins at biologically relevant protein densities is essential for linking idealized in vitro experiments with the in vivo situation.


Asunto(s)
Proteínas de Unión al ADN/análisis , ADN/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Pinzas Ópticas , ADN/análisis , Proteínas de Unión al ADN/metabolismo , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal/métodos , Nanotecnología/métodos , Nucleoproteínas/análisis , Nucleoproteínas/metabolismo
6.
Biochem Biophys Res Commun ; 443(1): 7-12, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24211586

RESUMEN

UBTD1 is a previously uncharacterized ubiquitin-like (UbL) domain containing protein with high homology to the mitochondrial Dc-UbP/UBTD2 protein. Here we show that UBTD1 and UBTD2 belong to a family of proteins that is conserved through evolution and found in metazoa, funghi, and plants. To gain further insight into the function of UBTD1, we screened for interacting proteins. In a yeast-2-hybrid (Y2H) screen, we identified several proteins involved in the ubiquitylation pathway, including the UBE2D family of E2 ubiquitin conjugating enzymes. An affinity capture screen for UBTD1 interacting proteins in whole cell extracts also identified members of the UBE2D family. Biochemical characterization of recombinant UBTD1 and UBE2D demonstrated that the two proteins form a stable, stoichiometric complex that can be purified to near homogeneity. We discuss the implications of these findings in light of the ubiquitin proteasome system (UPS).


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Ubiquitinas/clasificación , Ubiquitinas/genética
7.
Hum Mol Genet ; 20(6): 1212-23, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21228000

RESUMEN

A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación Missense , Oftalmoplejía Externa Progresiva Crónica/enzimología , Línea Celular , ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial/genética , Humanos , Oftalmoplejía Externa Progresiva Crónica/genética
8.
Biopolymers ; 99(9): 611-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23444293

RESUMEN

Essential genomic transactions such as DNA-damage repair and DNA replication take place on single-stranded DNA (ssDNA) or require specific single-stranded/double-stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single-molecule studies of DNA-protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single-molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force-induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force-induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA.


Asunto(s)
ADN de Cadena Simple , Pinzas Ópticas , ADN/química , Proteínas de Unión al ADN/química , Desnaturalización de Ácido Nucleico , Unión Proteica
9.
Nucleic Acids Res ; 39(21): 9238-49, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840902

RESUMEN

Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN Circular/metabolismo , ADN/biosíntesis , Proteínas Mitocondriales/metabolismo , ADN Polimerasa gamma , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/enzimología , Nucleótidos/metabolismo , Temperatura , Moldes Genéticos
10.
Methods Mol Biol ; 2615: 121-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807789

RESUMEN

Mitochondrial transcription factor A (TFAM) plays a key role in the organization and compaction of the mitochondrial genome. However, there are only a few simple and accessible methods available to observe and quantify TFAM-dependent DNA compaction. Acoustic Force Spectroscopy (AFS) is a straightforward single-molecule force spectroscopy technique. It allows one to track many individual protein-DNA complexes in parallel and to quantify their mechanical properties. Total internal reflection fluorescence (TIRF) microscopy is a high-throughput single-molecule technique that permits the real-time visualization of the dynamics of TFAM on DNA, parameters inaccessible with classical biochemistry tools. Here we describe, in detail, how to set up, perform, and analyze AFS and TIRF measurements to study DNA compaction by TFAM.


Asunto(s)
ADN , Fenómenos Mecánicos , ADN/química , Proteínas Mitocondriales/genética , Microscopía Fluorescente/métodos , Análisis Espectral/métodos , Acústica , ADN Mitocondrial/genética
11.
Mitochondrion ; 71: 93-103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343711

RESUMEN

The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.


Asunto(s)
NAD , Pirofosfatasas , Humanos , Hidrólisis , Mitocondrias/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/química , Pirofosfatasas/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(43): 18231-6, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19841258

RESUMEN

Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Temperatura de Transición , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente , Desnaturalización de Ácido Nucleico , Pinzas Ópticas
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166467, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716868

RESUMEN

Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression, and packaging of mitochondrial DNA (mtDNA). Recently, a pathogenic homozygous variant in TFAM (P178L) has been associated with a severe mtDNA depletion syndrome leading to neonatal liver failure and early death. We have performed a biochemical characterization of the TFAM variant P178L in order to understand the molecular basis for the pathogenicity of this mutation. We observe no effects on DNA binding, and compaction of DNA is only mildly affected by the P178L amino acid change. Instead, the mutation severely impairs mtDNA transcription initiation at the mitochondrial heavy and light strand promoters. Molecular modeling suggests that the P178L mutation affects promoter sequence recognition and the interaction between TFAM and the tether helix of POLRMT, thus explaining transcription initiation deficiency.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(32): 11122-7, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18685103

RESUMEN

The mitochondrial transcription machinery synthesizes the RNA primers required for initiation of leading-strand DNA synthesis in mammalian mitochondria. RNA primers are also required for initiation of lagging-strand DNA synthesis, but the responsible enzyme has so far remained elusive. Here, we present a series of observations that suggests that mitochondrial RNA polymerase (POLRMT) can act as lagging-strand primase in mammalian cells. POLRMT is highly processive on double-stranded DNA, but synthesizes RNA primers with a length of 25 to 75 nt on a single-stranded template. The short RNA primers synthesized by POLRMT are used by the mitochondrial DNA polymerase gamma to initiate DNA synthesis in vitro. Addition of mitochondrial single-stranded DNA binding protein (mtSSB) reduces overall levels of primer synthesis, but stimulates primer-dependent DNA synthesis. Furthermore, when combined, POLRMT, DNA polymerase gamma, the DNA helicase TWINKLE, and mtSSB are capable of simultaneous leading- and lagging-strand DNA synthesis in vitro. Based on our observations, we suggest that POLRMT is the lagging-strand primase in mammalian mitochondria.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN/fisiología , ADN Mitocondrial/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ARN/biosíntesis , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Polimerasa gamma , ADN Primasa/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ARN Polimerasas Dirigidas por ADN/química , Genoma Mitocondrial/fisiología , Humanos , Proteínas Mitocondriales/química , ARN/química
15.
Biochim Biophys Acta ; 1792(2): 132-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19084593

RESUMEN

TWINKLE is a DNA helicase needed for mitochondrial DNA replication. In lower eukaryotes the protein also harbors a primase activity, which is lost from TWINKLE encoded by mammalian cells. Mutations in TWINKLE underlie autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with multiple deletions in the mtDNA. Four different adPEO-causing mutations (W315L, K319T, R334Q, and P335L) are located in the N-terminal domain of TWINKLE. The mutations cause a dramatic decrease in ATPase activity, which is partially overcome in the presence of single-stranded DNA. The mutated proteins have defects in DNA helicase activity and cannot support normal levels of DNA replication. To explain the phenotypes, we use a molecular model of TWINKLE based on sequence similarities with the phage T7 gene 4 protein. The four adPEO-causing mutations are located in a region required to bind single-stranded DNA. These mutations may therefore impair an essential element of the catalytic cycle in hexameric helicases, i.e. the interplay between single-stranded DNA binding and ATP hydrolysis.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Oftalmoplejía Externa Progresiva Crónica/enzimología , Secuencia de Aminoácidos , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , Replicación del ADN/genética , ADN Mitocondrial/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Nucleic Acids Res ; 36(2): 393-403, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18039713

RESUMEN

The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg(2+) or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN Helicasas/genética , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Proteínas Mitocondriales , Estructura Terciaria de Proteína , Eliminación de Secuencia
17.
Nucleic Acids Res ; 35(3): 902-11, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17251196

RESUMEN

The mitochondrial replication machinery in human cells includes the DNA polymerase gamma holoenzyme and the TWINKLE helicase. Together, these two factors form a processive replication machinery, a replisome, which can use duplex DNA as template to synthesize long stretches of single-stranded DNA. We here address the importance of the smaller, accessory B subunit of DNA polymerase gamma and demonstrate that this subunit is absolutely required for replisome function. The duplex DNA binding activity of the B subunit is needed for coordination of POLgamma holoenzyme and TWINKLE helicase activities at the mtDNA replication fork. In the absence of proof for direct physical interactions between the components of the mitochondrial replisome, these functional interactions may explain the strict interdependence of TWINKLE and DNA polymerase gamma for mitochondrial DNA synthesis. Furthermore, mutations in TWINKLE as well as in the catalytic A and accessory B subunits of the POLgamma holoenzyme, may cause autosomal dominant progressive external ophthalmoplegia, a disorder associated with deletions in mitochondrial DNA. The crucial importance of the B subunit for replisome function may help to explain why mutations in these three proteins cause an identical syndrome.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Complejos Multienzimáticos/metabolismo , Subunidades de Proteína/fisiología , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Humanos , Proteínas Mitocondriales , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Moldes Genéticos
18.
Sci Rep ; 8(1): 5368, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599527

RESUMEN

EXD2 is a recently identified exonuclease that has been implicated in nuclear double-strand break repair. Given our long standing interest in mitochondrial DNA maintenance and indications that EXD2 could also be a mitochondrial protein we sought to determine its cellular localization and possible mitochondrial associated functions. Our results show that EXD2 indeed shows mitochondrial localization, but, surprisingly, is found predominantly associated with the mitochondrial outer-membrane. Gradient purified nuclei show only the faintest hint of EXD2 presence while overexpression of the predicted full-length protein shows exclusive mitochondrial localization. Importantly, induction of double-strand DNA breaks via X-irradiation or Zeocin treatment does not support the notion that EXD2 re-locates to the nucleus following double-strand breaks and thus is unlikely to have a direct role in nuclear DNA repair. Knockdown or overexpression of EXD2 affects the cellular distribution of mitochondria. These results suggest that the reported defects in nuclear DNA repair following EXD2 depletion are likely an indirect consequence of altered mitochondrial dynamics and/or function.


Asunto(s)
Reparación del ADN , Exonucleasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Exonucleasas/antagonistas & inhibidores , Exonucleasas/genética , Humanos , Microscopía Fluorescente , Mitocondrias/patología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
19.
PLoS One ; 12(4): e0176795, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28453550

RESUMEN

Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Mitocondrial , Southern Blotting , Western Blotting , Ciclooxigenasa 1/genética , Reparación del ADN , Endonucleasas/metabolismo , Exonucleasas/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Cinética , Mitocondrias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia , Transfección
20.
DNA Repair (Amst) ; 48: 8-16, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27793508

RESUMEN

BACKGROUND: Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS: Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS: PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.


Asunto(s)
Reparación del ADN , Proteínas de Drosophila/metabolismo , Macrófagos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Animales , Bleomicina/farmacología , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA