RESUMEN
BACKGROUND & AIMS: We recently identified a recessive syndrome due to DNA ligase 3 (LIG3) mutations in patients with chronic intestinal pseudo-obstruction, leukoencephalopathy, and neurogenic bladder. LIG3 mutations affect mitochondrial DNA maintenance, leading to defective energy production. We aimed at identifying altered molecular pathways and developing possible targeted treatments to revert/ameliorate the cellular energy impairment. METHODS: Whole transcriptome analysis was performed on patient-derived fibroblasts total RNA and controls. Mitochondrial function, mitophagy, and l-glutamine supplementation effects were analyzed by live cell analysis, immunostaining, and Western blot. Patients were treated with Dipeptiven (Fresenius-Kabi) according to standard protocols. Patients' symptoms were analyzed by the Gastrointestinal Symptom Rating Scale questionnaire. RESULTS: We identified deregulated transcripts in mutant fibroblasts vs controls, including overexpression of genes involved in extracellular matrix development and remodeling and mitochondrial functions. Gut biopsy specimens of LIG3-mutant patients documented collagen and elastic fiber accumulation. Mutant fibroblasts exhibited impaired mitochondrial mitophagy indicative of dysfunctional turnover and altered Ca2+ homeostasis. Supplementation with l-glutamine (6 mmol/L), previously shown to increase mitochondrial DNA-defective cell survival, improved growth rate and adenosine 5'-triphosphate production in LIG3-mutant fibroblasts. These data led us to provide parenterally a dipeptide containing l-glutamine to 3 siblings carrying biallelic LIG3 mutations. Compared with baseline, gastrointestinal and extra-gastrointestinal symptoms significantly improved after 8 months of treatment. CONCLUSIONS: LIG3 deficiency leads to mitochondrial dysfunction. High levels l-glutamine supplementation were beneficial in LIG3-mutant cells and improved symptom severity without noticeable adverse effects. Our results provide a proof of concept to design ad hoc clinical trials with l-glutamine in LIG3-mutant patients.
RESUMEN
γ-terpinene, α-terpinene, p-cymene, and myrcene are monoterpenes found in many essential oils extracted from a variety of plants and spices. Myrcene also occurs naturally in plants such as hops, cannabis, lemongrass, and verbena and is used as a flavoring agent in food and beverage manufacturing. In this research, the biological efficacy of γ-terpinene, α-terpinene, p-cymene, and myrcene was studied in human cell lines (HeLa, SH-SY5Y, and HDFa). Cytotoxicity, cell proliferation, cell migration, and morphology assays were performed to obtain detailed information on the anticancer properties. Our results show that myrcene has potential biological activity, especially in HeLa cells. In this cell line, it leads to an arrest of proliferation, a decrease in motility and morphological changes with loss of sphericity and thickness, and DNA damage. In addition, the interaction of γ-terpinene, α-terpinene, p-terpinene, and myrcene with calf thymus DNA (ct-DNA) was studied by UV-visible spectrophotometry. DNA binding experiments show that only myrcene can interact with DNA with an apparent dissociation constant (Kd) of 29 × 10-6 M.
RESUMEN
Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.
Asunto(s)
ADN Ligasa (ATP)/genética , Enfermedades Gastrointestinales/genética , Motilidad Gastrointestinal/genética , Encefalomiopatías Mitocondriales/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Animales , Femenino , Enfermedades Gastrointestinales/patología , Humanos , Masculino , Encefalomiopatías Mitocondriales/patología , Mutación , Linaje , Pez CebraRESUMEN
Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.
Asunto(s)
Antioxidantes , Xantófilas , Humanos , Antioxidantes/farmacología , Peroxidación de Lípido , Xantófilas/farmacología , Muerte CelularRESUMEN
Ellagitannins may have a beneficial impact in cardiovascular diseases. The aim of the study was to evaluate the effect of high-fat diet (HFD) and the efficacy of Castanea sativa Mill. bark extract (ENC) on cardiac and vascular parameters. Rats were fed with regular diet, (RD, n = 15), HFD (n = 15), RD + ENC (20 mg/kg/day by gavage, n = 15), and HFD + ENC (same dose, n = 15) and the effects on body weight, biochemical serum parameters, and inflammatory cytokines determined. Cardiac functional parameters and aorta contractility were also assessed on isolated atria and aorta. Results showed that ENC reduced weight gain and serum lipids induced by HFD. In in vitro assays, HFD decreased the contraction force of left atrium, increased right atrium chronotropy, and decreased aorta K+ -induced contraction; ENC induced transient positive inotropic and negative chronotropic effects on isolated atria from RD and HFD rats and a spasmolytic effect on aorta. In ex vivo experiments, ENC reverted inotropic and chronotropic changes induced by HFD and enhanced Nifedipine effect more on aorta than on heart. In conclusion, ENC restores metabolic dysfunction and cardiac cholinergic muscarinic receptor function, and exerts spasmolytic effect on aorta in HFD rats, highlighting its potential as nutraceutical tool in obesity.
Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Corteza de la Planta/química , Extractos Vegetales/química , Taninos/química , Animales , Modelos Animales de Enfermedad , Masculino , RatasRESUMEN
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.
Asunto(s)
Ataxia/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Animales , Membrana Celular/metabolismo , Respiración de la Célula/fisiología , Humanos , Peroxidación de Lípido/fisiología , Mitocondrias/metabolismo , Ubiquinona/metabolismoRESUMEN
Chlamydia persistence is a viable, but non-cultivable, growth stage, resulting in a long-term relationship with the infected host cell. In vitro, this condition can be induced by different stressor agents, including beta-lactam antibiotics, as penicillin. The aim of this study was to get new insights into the interactions between Chlamydia trachomatis (serovars D and L2) and the epithelial host cells (HeLa) during persistence condition. In particular, we evaluated the following aspects, by comparing the normal chlamydial development cycle with penicillin-induced persistence: (i) cell survival/death, (ii) externalization of phosphatidylserine, (iii) caspase 1 and caspase 3/7 activation, and (iv) reactive oxygen species (ROS) production by the infected cells. At 72 h post-infection, the cytotoxic effect displayed by CT was completely abolished for both serovars and for all levels of multiplicity of infection only in the cells with aberrant CT inclusions. At the same time, CT was able to switch off the exposure of the lipid phosphatidylserine on the surface of epithelial cells and to strongly inhibit the activation of caspase 1 and caspase 3/7 only in penicillin-treated cells. Forty-eight hours post-infection, CT elicited a significant ROS expression both in case of a normal cycle and in case of persistence. However, serovar L and penicillin-free infection activated a higher ROS production compared to serovar D and to penicillin-induced persistence, respectively. In conclusion, we added knowledge to the cellular dynamics taking place during chlamydial persistence, demonstrating that CT creates a suitable niche to survive, switching off signals able to activate phagocytes/leukocytes recruitment. Nevertheless, persistent CT elicits ROS production by the infected cells, potentially contributing to the onset of chronic inflammation and tissue damages.
RESUMEN
Chlamydia persistence is a viable but non-replicative stage, induced by several sub-lethal stressor agents, including beta-lactam antibiotics. So far, no data about the connection between doxycycline and chlamydial persistence has been described in literature. We investigated the ability of doxycycline to induce C. trachomatis (CT) persistence in an in vitro model of epithelial cell infection (HeLa cells), comparing the results with the well-established model of penicillin-induced persistence. The effect of doxycycline was explored on 10 different CT strains by analysing (i) the presence of aberrant inclusions, (ii) chlamydial recovery, (iii) the expression of different chlamydial genes (omcB, euo, Ct110, Ct604, Ct755, HtrA) and (iv) the effects on epithelial cell viability. For each strain, the presence of foreign genomic islands responsible of tetracycline resistance was excluded. We found that low doses of doxycycline can induce a condition of CT persistence. For concentrations of doxycycline equal to 0.03-0.015 mg/L, CT inclusions are smaller and aberrant and CT cycle is characterized by the presence of viable but non-dividing RBs with the complete abolishment of chlamydial cytotoxic effect. Infectious EBs can be recovered after removal of the drug. During doxycycline-induced persistence, the expression of the late gene omcB is decreased, indicating the blocking of RB-to-EB conversion. Conversely, as for penicillin G, a significant up-regulation of the stress response HtrA gene is found in doxycycline-treated cells. This study provides a novel in vitro cell model to examine the characteristics of doxycycline-induced persistent CT infection.
Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Doxiciclina/farmacología , Células HeLa , Humanos , PenicilinasRESUMEN
Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.-Diquigiovanni, C., Bergamini, C., Diaz, R., Liparulo, I., Bianco, F., Masin, L., Baldassarro, V. A., Rizzardi, N., Tranchina, A., Buscherini, F., Wischmeijer, A., Pippucci, T., Scarano, E., Cordelli, D. M., Fato, R., Seri, M., Paracchini, S., Bonora, E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism.
Asunto(s)
Proteínas de Ciclo Celular/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Piruvatos/metabolismo , Calcio/metabolismo , Línea Celular , Niño , Complejo I de Transporte de Electrón/metabolismo , Endosomas/genética , Endosomas/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , NAD/genética , NAD/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Trastornos del Neurodesarrollo/metabolismoRESUMEN
Mitochondrial dysfunction plays a significant role in the metabolic flexibility of cancer cells. This study aimed to investigate the metabolic alterations due to Coenzyme Q depletion in MCF-7 cells. METHOD: The Coenzyme Q depletion was induced by competitively inhibiting with 4-nitrobenzoate the coq2 enzyme, which catalyzes one of the final reactions in the biosynthetic pathway of CoQ. The bioenergetic and metabolic characteristics of control and coenzyme Q depleted cells were investigated using polarographic and spectroscopic assays. The effect of CoQ depletion on cell growth was analyzed in different metabolic conditions. RESULTS: we showed that cancer cells could cope from energetic and oxidative stress due to mitochondrial dysfunction by reshaping their metabolism. In CoQ depleted cells, the glycolysis was upregulated together with increased glucose consumption, overexpression of GLUT1 and GLUT3, as well as activation of pyruvate kinase (PK). Moreover, the lactate secretion rate was reduced, suggesting that the pyruvate flux was redirected, toward anabolic pathways. Finally, we found a different expression pattern in enzymes involved in glutamine metabolism, and TCA cycle in CoQ depleted cells in comparison to controls. CONCLUSION: This work elucidated the metabolic alterations in CoQ-depleted cells and provided an insightful understanding of cancer metabolism targeting.
Asunto(s)
Metabolismo Energético , Células MCF-7/metabolismo , Mitocondrias/metabolismo , Ubiquinona/deficiencia , HumanosRESUMEN
Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.
Asunto(s)
Proliferación Celular , Embrión no Mamífero/patología , Mitocondrias/patología , Mutación , Miosina Tipo I/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Células Cultivadas , Niño , Cromosomas Humanos Par 19 , Embrión no Mamífero/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Consumo de Oxígeno , Linaje , Conformación Proteica , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Adulto Joven , Pez CebraRESUMEN
Charcot-Marie-Tooth 2A (CMT2A) is an inherited peripheral neuropathy caused by mutations in MFN2, which encodes a mitochondrial membrane protein involved in mitochondrial network homeostasis. Because MFN2 is expressed ubiquitously, the reason for selective motor neuron (MN) involvement in CMT2A is unclear. To address this question, we generated MNs from induced pluripotent stem cells (iPSCs) obtained from the patients with CMT2A as an in vitro disease model. CMT2A iPSC-derived MNs (CMT2A-MNs) exhibited a global reduction in mitochondrial content and altered mitochondrial positioning without significant differences in survival and axon elongation. RNA sequencing profiles and protein studies of key components of the apoptotic executioner program (i.e. p53, BAX, caspase 8, cleaved caspase 3, and the anti-apoptotic marker Bcl2) demonstrated that CMT2A-MNs are more resistant to apoptosis than wild-type MNs. Exploring the balance between mitochondrial biogenesis and the regulation of autophagy-lysosome transcription, we observed an increased autophagic flux in CMT2A-MNs that was associated with increased expression of PINK1, PARK2, BNIP3, and a splice variant of BECN1 that was recently demonstrated to be a trigger for mitochondrial autophagic removal. Taken together, these data suggest that the striking reduction in mitochondria in MNs expressing mutant MFN2 is not the result of impaired biogenesis, but more likely the consequence of enhanced mitophagy. Thus, these pathways represent possible novel molecular therapeutic targets for the development of an effective cure for this disease.
Asunto(s)
Apoptosis/genética , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Neuronas Motoras/metabolismo , Autofagia/genética , Beclina-1/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , GTP Fosfohidrolasas/biosíntesis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/biosíntesis , Neuronas Motoras/patología , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutations (m.3460G>A/MT-ND1, m.3571insC/MT-ND1 and m.3243A>G/MT-TL1) on osteosarcoma progression, chosen since they induce different degrees of oxidative phosphorylation impairment. In fact, the m.3460G>A/MT-ND1 mutation caused only a reduction in CI activity, whereas the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1 mutations induced a severe structural and functional CI alteration. As a consequence, this severe CI dysfunction determined an energetic defect associated with a compensatory increase in glycolytic metabolism and AMP-activated protein kinase activation. Osteosarcoma cells carrying such marked CI impairment displayed a reduced tumorigenic potential both in vitro and in vivo, when compared with cells with mild CI dysfunction, suggesting that mtDNA mutations may display diverse impact on tumorigenic potential depending on the type and severity of the resulting oxidative phosphorylation dysfunction. The modulation of tumor growth was independent from reactive oxygen species production but correlated with hypoxia-inducible factor 1α stabilization, indicating that structural and functional integrity of CI and oxidative phosphorylation are required for hypoxic adaptation and tumor progression.
Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Metabolismo Energético , NADH Deshidrogenasa/metabolismo , Osteosarcoma/genética , ARN de Transferencia/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Insercional , NADH Deshidrogenasa/genética , Osteosarcoma/patología , Fosforilación Oxidativa , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.
Asunto(s)
Complejo I de Transporte de Electrón/fisiología , Mitocondrias/efectos de los fármacos , Propofol/toxicidad , Ubiquinona/análogos & derivados , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Suplementos Dietéticos , Células HeLa , Humanos , Hipnóticos y Sedantes/toxicidad , Mitocondrias/química , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ubiquinona/efectos de los fármacos , Ubiquinona/farmacologíaRESUMEN
This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.
Asunto(s)
Cóclea/patología , Pérdida Auditiva Provocada por Ruido , Estrés Oxidativo/fisiología , Ubiquinona/uso terapéutico , Corteza Visual/patología , Fascículo Atrioventricular Accesorio , Estimulación Acústica , Aldehídos/metabolismo , Análisis de Varianza , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Vías Auditivas/efectos de los fármacos , Vías Auditivas/patología , Vías Auditivas/ultraestructura , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Etidio/análogos & derivados , Etidio/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva Provocada por Ruido/complicaciones , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacología , Corteza Visual/efectos de los fármacosRESUMEN
The search for new drugs fulfilling One Health and Green Chemistry requirements is an urgent call. Here, for the first time, we envisaged developing SAHA analogues by starting from the cashew nutshell liquid (CNSL) agro-industrial waste and employing a metathesis approach. This sustainable combination (comprising principles #7 and #9) allowed a straightforward synthesis of compounds 13-20. All of them were found to not be toxic on HepG2, IMR-32, and L929 cell lines. Then, their potential against major human and animal vector-borne parasitic diseases (VBPDs) was assessed. Compound 13 emerged as a green hit against the trypomastigote forms of T. b. brucei. In silico studies showed that the T. b. brucei HDAC (TbDAC) catalytic pocket could be occupied with a similar binding mode by both SAHA and 13, providing a putative explanation for its antiparasitic mechanism of action (13, EC50 = 0.7 ± 0.2 µM).
RESUMEN
A vaginal microbiota dominated by certain Lactobacillus species may have a protective effect against Chlamydia trachomatis infection. One of the key antimicrobial compounds produced is lactic acid, which is believed to play a central role in host defense. Lactobacillus strains producing the D(-)-lactic acid isomer are known to exert stronger protection. However, the molecular mechanisms underlying this antimicrobial action are not well understood. The aim of this study was to investigate the role of D(-)-lactic acid isomer in the prevention of C. trachomatis infection in an in vitro HeLa cell model. We selected two strains of lactobacilli belonging to different species: a vaginal isolate of Lactobacillus crispatus that releases both D(-) and L(+) isomers and a strain of Lactobacillus reuteri that produces only the L(+) isomer. Initially, we demonstrated that L. crispatus was significantly more effective than L. reuteri in reducing C. trachomatis infectivity. A different pattern of histone acetylation and lactylation was observed when HeLa cells were pretreated for 24 h with supernatants of Lactobacillus crispatus or L. reuteri, resulting in different transcription of genes such as CCND1, CDKN1A, ITAG5 and HER-1. Similarly, distinct transcription patterns were found in HeLa cells treated with 10 mM D(-)- or L(+)-lactic acid isomers. Our findings suggest that D(-) lactic acid significantly affects two non-exclusive mechanisms involved in C. trachomatis infection: regulation of the cell cycle and expression of EGFR and α5ß1-integrin.
RESUMEN
Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART.
Asunto(s)
Disfunción Cognitiva , Ubiquinona , Masculino , Humanos , Preescolar , Ubiquinona/farmacología , Proteínas Nucleares , Metabolismo Energético , Proteínas Mitocondriales/genéticaRESUMEN
BACKGROUND: Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS: Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS: MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS: MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Ratas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismoRESUMEN
Recent investigations by native gel electrophoresis showed the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis demonstrated that Complex I and Complex III in mammalian mitochondria kinetically behave as a single unit with control coefficients approaching unity for each component, suggesting the existence of substrate channeling within the super-complex. The formation of this supramolecular unit largely depends on the lipid content and composition of the inner mitochondrial membrane. The function of the super-complexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes, particularly Complex I, and in preventing excess oxygen radical formation. There is increasing evidence that disruption of the super-complex organization leads to functional derangements responsible for pathological changes, as we have found in K-ras-transformed fibroblasts.