Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440783

RESUMEN

Label-free optical biosensors, such as surface plasmon resonance, are sensitive and well-established for the characterization of molecular interactions. Yet, these sensors require stabilization and constant conditions even with the use of reference channels. In this paper, we use tools from signal processing to show why these sensors are so cross-sensitive and how to overcome their drawbacks. In particular, we conceptualize the spatial affinity lock-in as a universal design principle for sensitive molecular sensors even in the complete absence of stabilization. The spatial affinity lock-in is analogous to the well-established time-domain lock-in. Instead of a time-domain signal, it modulates the binding signal at a high spatial frequency to separate it from the low spatial frequency environmental noise in Fourier space. In addition, direct sampling of the locked-in sensor's response in Fourier space enabled by diffraction has advantages over sampling in real space as done by surface plasmon resonance sensors using the distributed reference principle. This paper and part II hint at the potential of spatially locked-in diffractometric biosensors to surpass state-of-the-art temperature-stabilized refractometric biosensors. Even simple, miniaturized and non-stabilized sensors might achieve the performance of bulky lab instruments. This may enable new applications in label-free analysis of molecular binding and point-of-care diagnostics.

2.
Anal Chem ; 92(13): 8983-8991, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32524822

RESUMEN

Molecular processes within cells have traditionally been studied with biochemical methods due to their high degree of specificity and ease of use. In recent years, cell-based assays have gained more and more popularity since they facilitate the extraction of mode of action, phenotypic, and toxicity information. However, to provide specificity, cellular assays rely heavily on biomolecular labels and tags while label-free cell-based assays only offer holistic information about a bulk property of the investigated cells. Here, we introduce a cell-based assay for protein-protein interaction analysis. We achieve specificity by spatially ordering a membrane protein of interest into a coherent pattern of fully functional membrane proteins on the surface of an optical sensor. Thereby, molecular interactions with the coherently ordered membrane proteins become visible in real time, while nonspecific interactions and holistic changes within the living cell remain invisible. Due to its unbiased nature, this new cell-based detection method presents itself as an invaluable tool for cell signaling research and drug discovery.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas de la Membrana/metabolismo , Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mapas de Interacción de Proteínas , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
3.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375003

RESUMEN

Label-free optical biosensors are an invaluable tool for molecular interaction analysis. Over the past 30 years, refractometric biosensors and, in particular, surface plasmon resonance have matured to the de facto standard of this field despite a significant cross reactivity to environmental and experimental noise sources. In this paper, we demonstrate that sensors that apply the spatial affinity lock-in principle (part I) and perform readout by diffraction overcome the drawbacks of established refractometric biosensors. We show this with a direct comparison of the cover refractive index jump sensitivity as well as the surface mass resolution of an unstabilized diffractometric biosensor with a state-of-the-art Biacore 8k. A combined refractometric diffractometric biosensor demonstrates that a refractometric sensor requires a much higher measurement precision than the diffractometric to achieve the same resolution. In a conceptual and quantitative discussion, we elucidate the physical reasons behind and define the figure of merit of diffractometric biosensors. Because low-precision unstabilized diffractometric devices achieve the same resolution as bulky stabilized refractometric sensors, we believe that label-free optical sensors might soon move beyond the drug discovery lab as miniaturized, mass-produced environmental/medical sensors. In fact, combined with the right surface chemistry and recognition element, they might even bring the senses of smell/taste to our smart devices.

4.
Opt Lett ; 43(23): 5801-5804, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499945

RESUMEN

Focal molography is a label-free optical biosensing method that relies on a coherent pattern of binding sites for biomolecular interaction analysis. Reactive immersion lithography (RIL) is central to the patterning of molographic chips but has potential for improvements. Here, we show that applying the idea of image reversal to RIL enables the fabrication of coherent binding patterns of increased quality (i.e., higher analyte efficiency). Thereby the detection limit of focal molography in biological assays can be improved.

5.
Anal Chem ; 85(9): 4628-35, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23570270

RESUMEN

Direct hyphenation of miniaturized sampling devices to electrospray ionization-mass spectrometry (ESI-MS) is attractive because ESI-MS is compatible with microfluidics and allows comprehensive sample analysis, yielding information that is orthogonal to that available from optical methods. We present a "capillary gap sampler" as a platform for directly connecting microfluidics to µ-ESI-MS. The sampler was designed to be robust, light and compact, and to allow precise and fast liquid handling. Sample introduction in the range of a few nanoliters is performed via an open liquid bridge as a new microfluidic element. This allows minimum contact of the sample with system surfaces during the infusion process. The system shows good performance characteristics such as symmetrical peak shapes, low sample carryover (below 1%), and total injection cycle times of less than 15 s. This new device thus has the potential for rapid analysis of biomedical and pharmaceutical samples with limited sample amounts in a high-throughput mode.


Asunto(s)
Acetatos/análisis , Cortisona/análisis , Hidrocortisona/análisis , Técnicas Analíticas Microfluídicas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Trimetoprim/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Agua/análisis
6.
ACS Sens ; 6(3): 1067-1076, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33629586

RESUMEN

In vitro diagnostics relies on the quantification of minute amounts of a specific biomolecule, called biomarker, from a biological sample. The majority of clinically relevant biomarkers for conditions beyond infectious diseases are detected by means of binding assays, where target biomarkers bind to a solid phase and are detected by biochemical or physical means. Nonspecifically bound biomolecules, the main source of variation in such assays, need to be washed away in a laborious process, restricting the development of widespread point-of-care diagnostics. Here, we show that a diffractometric assay provides a new, label-free possibility to investigate complex samples, such as blood plasma. A coherently arranged sub-micron pattern, that is, a peptide mologram, is created to demonstrate the insensitivity of this diffractometric assay to the unwanted masking effect of nonspecific interactions. In addition, using an array of low-affinity binders, we also demonstrate the feasibility of molecular profiling of blood plasma in real time and show that individual patients can be differentiated based on the binding kinetics of circulating proteins.


Asunto(s)
Proteínas , Biomarcadores , Humanos
7.
Nat Nanotechnol ; 12(11): 1089-1095, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28945239

RESUMEN

Focal molography is a next-generation biosensor that visualizes specific biomolecular interactions in real time. It transduces affinity modulation on the sensor surface into refractive index modulation caused by target molecules that are bound to a precisely assembled nanopattern of molecular recognition sites, termed the 'mologram'. The mologram is designed so that laser light is scattered at specifically bound molecules, generating a strong signal in the focus of the mologram via constructive interference, while scattering at nonspecifically bound molecules does not contribute to the effect. We present the realization of molograms on a chip by submicrometre near-field reactive immersion lithography on a light-sensitive monolithic graft copolymer layer. We demonstrate the selective and sensitive detection of biomolecules, which bind to the recognition sites of the mologram in various complex biological samples. This allows the label-free analysis of non-covalent interactions in complex biological samples, without a need for extensive sample preparation, and enables novel time- and cost-saving ways of performing and developing immunoassays for diagnostic tests.


Asunto(s)
Anticuerpos/sangre , Técnicas Biosensibles , Dispersión Dinámica de Luz , Dispositivos Laboratorio en un Chip , Rayos Láser , Nanopartículas/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Dispersión Dinámica de Luz/instrumentación , Dispersión Dinámica de Luz/métodos , Humanos
9.
Lab Chip ; 4(6): 563-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15570366

RESUMEN

We use microfluidic chips to detect the biologically important cytokine tumor necrosis factor alpha (TNF- alpha) with picomolar sensitivity using sub-microliter volumes of samples and reagents. The chips comprise a number of independent capillary systems (CSs), each of which is composed of a filling port, an appended microchannel, and a capillary pump. Each CS fills spontaneously by capillary forces and includes a self-regulating mechanism that prevents adventitious drainage of the microchannels. Thus, interactive control of the flow in each CS is easily achieved via collective control of the evaporation in all CSs by means of two Peltier elements that can independently heat and cool. Long incubation times are crucial for high sensitivity assays and can be conveniently obtained by adjusting the evaporation rate to have low flow rates of approximately 30 nL min(-1). The assay is a sandwich fluorescence immunoassay and takes place on the surface of a poly(dimethylsiloxane)(PDMS) slab placed across the microchannels. We precoat PDMS with capture antibodies (Abs), localize the capture of analyte molecules using a chip, then bind the captured analyte molecules with fluorescently-tagged detection Abs using a second chip. The assay results in a mosaic of fluorescence signals on the PDMS surface which are measured using a fluorescence scanner. We show that PDMS is a compatible material for high sensitivity fluorescence assays, provided that detection antibodies with long excitation wavelength fluorophores ( > or =580 nm) are employed. The chip design, long incubation times, proper choice of fluorophores, and optimization of the detection Ab concentration all combine to achieve high-sensitivity assays. This is exemplified by an experiment with 170 assay sites, occupying an area of approximately 0.6 mm(2) on PDMS to detect TNF-alpha in 600 nL of a dendritic cell (DC) culture medium with a sensitivity of approximately 20 pg mL(-1)(1.14 pM).


Asunto(s)
Células Dendríticas/citología , Análisis de Inyección de Flujo/instrumentación , Inmunoensayo de Polarización Fluorescente/instrumentación , Microquímica/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/metabolismo , Anticuerpos/inmunología , Células Dendríticas/metabolismo , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/métodos , Inmunoensayo de Polarización Fluorescente/métodos , Humanos , Microquímica/métodos , Técnicas Analíticas Microfluídicas/métodos , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA