Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(27): 18241-18252, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38815248

RESUMEN

Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Imidazoles/química , Imidazoles/farmacología , Imidazoles/uso terapéutico
2.
Molecules ; 29(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064920

RESUMEN

Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption-elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC.

3.
Beilstein J Org Chem ; 20: 101-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264449

RESUMEN

The photoreactions of selected styrylpyridine derivatives to the corresponding benzo[c]quinolizinium ions are described. It is shown that these reactions are more efficient in aqueous solution (97-44%) than in organic solvents (78-20% in MeCN). The quinolizinium derivatives bind to DNA by intercalation with binding constants of 6-11 × 104 M-1, as shown by photometric and fluorimetric titrations as well as by CD- and LD-spectroscopic analyses. These ligand-DNA complexes can also be established in situ upon irradiation of the styrylpyridines and formation of the intercalator directly in the presence of DNA. In addition to the DNA-binding properties, the tested benzo[c]quinolizinium derivatives also operate as photosensitizers, which induce DNA damage at relative low concentrations and short irradiation times, even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage.

4.
Biol Direct ; 19(1): 41, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812048

RESUMEN

The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Animales , Procesamiento Proteico-Postraduccional , Metilación , Células Madre/metabolismo
5.
Dalton Trans ; 53(3): 1141-1155, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38105658

RESUMEN

In this article, we present the synthesis and characterization of new acyclic pyridine-containing polyaminocarboxylate ligands H4aPyta and H6aPyha, which differ in structural rigidity and the number of chelating groups. Their abilities to form complexes with Cu2+, Ga3+, Y3+, and Bi3+ cations, as well as the stability of the complexes, were evaluated by potentiometric titration method, radiolabeling with the corresponding radionuclides, in vitro studies, mass spectrometry, and HPLC. The structures of the resulting complexes were determined using NMR spectroscopy and DFT calculations. The results obtained made it possible to evaluate the influence of the structural features of the complexes on their stability. The developed chelators H4aPyta and H6aPyha were proved to be promising for further research in the field of radiopharmaceuticals.

6.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798556

RESUMEN

Background: Thrombosis is a major cause of myocardial infarction and ischemic stroke. The sodium/potassium ATPase (NKA), comprising α and ß subunits, is crucial in maintaining intracellular sodium and potassium gradients. However, the role of NKA in platelet function and thrombosis remains unclear. Methods: We utilized wild-type (WT, α1+/+) and NKA α1 heterozygous (α1+/-) mice, aged 8 to 16 weeks, of both sexes. An intravital microscopy-based, FeCl3-induced carotid artery injury thrombosis model was employed for in vivo thrombosis assessment. Platelet transfusion assays were used to evaluate platelet NKA α1 function on thrombosis. Human platelets isolated from healthy donors and heart failure patients treated with/without digoxin were used for platelet function and signaling assay. Complementary molecular approaches were used for mechanistic studies. Results: NKA α1 haplodeficiency significantly reduced its expression on platelets without affecting sodium homeostasis. It significantly inhibited 7.5% FeCl3-induced thrombosis in male but not female mice without disturbing hemostasis. Transfusion of α1+/-, but not α1+/+, platelets to thrombocytopenic WT mice substantially prolonged thrombosis. Treating WT mice with low-dose ouabain or marinobufagenin, both binding NKA α1 and inhibiting its ion-transporting function, markedly inhibited thrombosis in vivo. NKA α1 formed complexes with leucine-glycine-leucine (LGL)-containing platelet receptors, including P2Y12, PAR4, and thromboxane A2 receptor. This binding was significantly attenuated by LGL>SFT mutation or LGL peptide. Haplodeficiency of NKA α1 in mice or ouabain treatment of human platelets notably inhibited ADP-induced platelet aggregation. While not affecting 10% FeCl3-induced thrombosis, NKA α1 haplodeficiency significantly prolonged thrombosis time in mice treated with an ineffective dose of clopidogrel. Conclusion: NKA α1 plays an essential role in enhancing platelet activation through binding to LGL-containing platelet GPCRs. NKA α1 haplodeficiency or inhibition with low-dose ouabain and marinobufagenin significantly inhibited thrombosis and sensitized clopidogrel's anti-thrombotic effect. Targeting NKA α1 emerges as a promising antiplatelet and antithrombotic therapeutic strategy.

7.
Adv Healthc Mater ; : e2303815, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648653

RESUMEN

RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.

8.
ACS Nano ; 18(18): 11631-11643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652829

RESUMEN

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.


Asunto(s)
Inmunoterapia , Nanopartículas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Lípidos/química , Ratones Endogámicos C57BL , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos
9.
Sci Rep ; 14(1): 524, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177202

RESUMEN

The treatment of tuberculosis is still a challenging process due to the widespread of pathogen strains resistant to antibacterial drugs, as well as the undesirable effects of anti-tuberculosis therapy. Hence, the development of safe and effective new anti-antitubercular agents, in addition to suitable nanocarrier systems, has become of utmost importance and necessity. Our research aims to develop liposomal vesicles that contain newly synthesized compounds with antimycobacterial action. The compound being studied is a derivative of imidazo-tetrazine named 3-(3,5-dimethylpyrazole-1-yl)-6-(isopropylthio) imidazo [1,2-b] [1,2,4,5] tetrazine compound. Several factors that affect liposomal characteristics were studied. The maximum encapsulation efficiency was 53.62 ± 0.09. The selected liposomal formulation T8* possessed a mean particle size of about 205.3 ± 3.94 nm with PDI 0.282, and zeta potential was + 36.37 ± 0.49 mv. The results of the in vitro release study indicated that the solubility of compound I was increased by its incorporation in liposomes. The free compound and liposomal preparation showed antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294) at MIC value 0.94-1.88 µg/ml. We predict that the liposomes may be a good candidate for delivering new antitubercular drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Liposomas/farmacología , Antituberculosos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA