RESUMEN
NLRX1 is unique among the nucleotide-binding-domain and leucine-rich-repeat (NLR) proteins in its mitochondrial localization and ability to negatively regulate antiviral innate immunity dependent on the adaptors MAVS and STING. However, some studies have suggested a positive regulatory role for NLRX1 in inducing antiviral responses. We found that NLRX1 exerted opposing regulatory effects on viral activation of the transcription factors IRF1 and IRF3, which might potentially explain such contradictory results. Whereas NLRX1 suppressed MAVS-mediated activation of IRF3, it conversely facilitated virus-induced increases in IRF1 expression and thereby enhanced control of viral infection. NLRX1 had a minimal effect on the transcription of IRF1 mediated by the transcription factor NF-kB and regulated the abundance of IRF1 post-transcriptionally by preventing translational shutdown mediated by the double-stranded RNA (dsRNA)-activated kinase PKR and thereby allowed virus-induced increases in the abundance of IRF1 protein.
Asunto(s)
Hepacivirus/inmunología , Hepatitis C/inmunología , Inmunidad Innata/inmunología , Factor 1 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas Mitocondriales/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Células Cultivadas , Activación Enzimática/inmunología , Células HEK293 , Hepatitis C/virología , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Factor 1 Regulador del Interferón/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , FN-kappa B/metabolismo , ARN Viral/genética , Virus Sendai/inmunología , eIF-2 Quinasa/metabolismoRESUMEN
Multi-principal element alloys (MPEAs) exhibit outstanding strength attributed to the complex dislocation dynamics as compared to conventional alloys. Here, we develop an atomic-lattice-distortion-dependent discrete dislocation dynamics framework consisted of random field theory and phenomenological dislocation model to investigate the fundamental deformation mechanism underlying massive dislocation motions in body-centered cubic MPEA. Amazingly, the turbulence of dislocation speed is identified in light of strong heterogeneous lattice strain field caused by short-range ordering. Importantly, the vortex from dislocation flow turbulence not only acts as an effective source to initiate dislocation multiplication but also induces the strong local pinning trap to block dislocation movement, thus breaking the strength-ductility trade-off.
RESUMEN
An outbreak of coronavirus disease 2019 (COVID-19)1-3, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/farmacología , Betacoronavirus/química , Unión Competitiva , COVID-19 , Línea Celular , Chlorocebus aethiops , Cristalización , Cristalografía por Rayos X , Femenino , Humanos , Técnicas In Vitro , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Modelos Moleculares , Pruebas de Neutralización , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Carga Viral/inmunologíaRESUMEN
The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (â¼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to â¼50 µC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.
RESUMEN
Antiferroelectric materials have shown great potential in electronic devices benefiting from the reversible phase transition between ferroelectric and antiferroelectric phases. Understanding the dipole arrangements and clear phase transition pathways is crucial for design of antiferroelectric materials-based energy storage and conversion devices. However, the specific phase transition details remain largely unclear and even controversial to date. Here, we have grown a series of PbZrO3 on SrTiO3 substrates and elucidated the fine atom structures and phase transition pathways using atomic-resolution transmission electron microscopy. Specifically, a roadmap for ferroelectric to antiferroelectric phase transitions, here with increasing film thickness, is determined as ferroelectric rhombohedral (R3c)-ferroelectric monoclinic (Pc)-ferrielectric orthorhombic (Ima2)-antiferroelectric orthorhombic (Pbam), where Pc and Ima2 phases act as structural bridges. Moreover, the phase transition pathway is strongly related to the synergistic effect of oxygen octahedral tilting and cation displacement. These findings provide an insightful understanding for the theories and related properties of antiferroelectrics.
RESUMEN
Realizing topological transformation through supramolecular fusion is particularly challenging, as the self-assembly of disparate components often results in the orthogonal assembly of building blocks into distinct structures rather than the formation of a heteroleptic architecture. This study introduces a topological transformation, transitioning from a figure-eight knot (41 knot) to a Solomon link (412 link) through a supramolecular fusion process. By employing two structurally similar amino acid ligands (L1 and L3) of varying lengths as bridge ligands, we obtained figure-eight knot 1 and a molecular tweezer-like compound 3 when individually complexed with binuclear Cp*Rh acceptor B1. Our results revealed that subtle modifications to bridge ligands can lead to dramatic changes in their structures and recognition properties. Moreover, we successfully achieved the targeted formation of a heteroleptic Solomon link 4 by blending figure-eight knot 1 and compound 3 in a 1:1 ratio without the need for templates. This procedure effortlessly converted the 41 knot into a 412 link, thus marking a significant advancement in the topological transformation. This work not only marks the construction of the first heteroleptic Solomon link comprising two distinct metallamacrocycles but also demonstrates a process of supramolecular fusion-based topological transformation involving three distinct topological structures.
RESUMEN
The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.
RESUMEN
BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRTâPCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.
Asunto(s)
Fertilizantes , Metaboloma , Nitrógeno , Florizina , Transcriptoma , Nitrógeno/metabolismo , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica , Espectrometría de Masas en Tándem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Nucleic acid strand displacement is a pivotal concept in dynamic nucleic acid nanotechnologies, which has been extensively investigated and applied across various fields. Compared with DNA systems, the genetically expressed RNA strand displacement technology offers unique advantages for construction of genetic circuits in living cells, where RNA expression and modulation may be seamlessly integrated into the genomic network for long-term and stable regulations of diversified biological functionalities. This Concept paper provides an overview of previous efforts on developments of synthetic gene circuits through utilization of RNA strand displacement, including our endeavors in this field. Moreover, future prospects, potential applications and challenges of the genetically expressed RNA strand displacement technology are also discussed.
RESUMEN
Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.
Asunto(s)
Proteínas Portadoras , Membrana Celular , Resistencia a la Enfermedad , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Membrana Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora infestans/patogenicidad , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/fisiología , Botrytis , Plantas Modificadas Genéticamente , Pectobacterium carotovorumRESUMEN
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Virus de la Hepatitis A , Animales , Proteínas de Unión al Calcio/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Mamíferos , Proteínas Virales/metabolismoRESUMEN
Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.
Asunto(s)
Sequías , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , Triticum/fisiología , Polimorfismo de Nucleótido Simple/genética , Haplotipos/genética , Carácter Cuantitativo Heredable , Adaptación Fisiológica/genética , Resistencia a la SequíaRESUMEN
Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.
Asunto(s)
Proteínas de la Membrana , Serina Endopeptidasas , Internalización del Virus , Animales , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Porcinos , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Alphacoronavirus/genética , Alphacoronavirus/fisiología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Gabexato/análogos & derivados , Gabexato/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Células HEK293 , Línea Celular , Chlorocebus aethiops , Enfermedades de los Porcinos/virología , Ésteres , GuanidinasRESUMEN
In this paper, we present the bit error rate (BER) performance of the underwater wireless optical communication (UWOC) systems using the optical space shift keying (OSSK) on the gamma-gamma turbulent fading channel, which also considers pointing errors and channel estimation errors. Firstly, we develop the new expressions for the probability density function (PDF) based on the Gamma-Gamma distribution with error factors. Subsequently, we analyze the statistical characteristic of the difference in attenuation coefficients between two channels in the OSSK system, by which we provide analytical results for evaluating the average BER performance. The results show that the effective improvement of spectral efficiency (SE) and BER performance is achieved by rationally allocating the number of lasers and detectors in the system. The OSSK-UWOC system performs better when a narrow beam waist is used. Furthermore, the presence of channel estimation error brings the BER performance advantage to the system, and the system with a high channel estimation error (ρ = 0.7) shows a 4â dB improvement in signal-to-noise ratio (SNR) gain compared to the system with a low channel estimation error (ρ = 0.95). The findings in this paper can be used for the UWOC system design.
RESUMEN
This paper investigates the propagation of Gaussian array beams (GABs) through seawater-to-air in the presence of oceanic turbulence, atmospheric turbulence, and wave foams. Specifically, we focus on the intensity distribution of diverse typical GAB structures (ring, multi-ring, and rectangle). Then, an innovative intensity analysis model to calculate the average intensity in each medium is proposed. Moreover, we experimentally verify the proposed method by examining the intensity fading characteristic of Gaussian beams in the seawater-to-air path. Our results show that the peak intensity is primarily affected by the refraction in the ocean and foam layer, rather than air layer. The difference of theoretical and experimental values are less than 0.13 for the peak intensity. Moreover, the intensity distributions are more significantly affected by ocean turbulence but less influenced by wind speed.
RESUMEN
A vector optical field with inhomogeneous spatial polarization distribution offers what we believe to be a new paradigm to form controllable filaments. However, it is challenging to steer multiple performances (e.g. number, orientation, and interval) of filaments in transparent nonlinear media at one time. Herein, we theoretically self-design and generate a kind of believed to be novel ellipticity and orientation co-variant vector optical field to interact with Kerr medium to solve this issue. The collapsing behaviors of such a new hybrid vector optical field reveal that, by judiciously adjusting the inherent topological charge and initial phase of incident optical field, we are able to give access to stable collapsing filamentation with tunable numbers, orientations and interval. Additionally, the collapsing patterns presented are immune nearly to the extra random noise. The relevant mechanism behind the collapse of the vector optical field is elucidated as well. The findings in this work may have huge potential in optical signal processing, laser machining, and other related applications.
RESUMEN
KEY MESSAGE: BrFLS mutation promoted anthocyanin accumulation in Chinese cabbage, which was verified in four allelic mutants. Chinese cabbage is a major vegetable crop in Eastern Asia. Anthocyanin-rich vibrantly colored varieties are increasingly favored by consumers for their higher nutritional and aesthetic value compared to the typical green varieties of Chinese cabbage. Herein, we identified an anthocyanin accumulation mutant aam1 from a mutant library of EMS-mutagenized Chinese cabbage DH line 'FT', which appeared partial purple on leaves, bolting stems and floral buds. This anthocyanin accumulation trait was genetically controlled by a recessive nuclear gene, and through MutMap mapping and KASP genotyping, BraA10g030950.3C was identified as the candidate causal gene with a G202 to A202 non-synonymous SNP variation in exon 1. Three additional mutants allelic to aam1 were obtained via screening of similar-phenotype mutants from the mutant library, namely aam2/3/4, where the causal SNPs reside in the same gene as aam1, corroborating that the mutation of BraA10g030950.3C caused anthocyanin accumulation. BraA10g030950.3C encodes a flavonol synthase that catalyzes dihydroflavonols substrate into flavonols and is homologous to Arabidopsis FLS1 (AT5G08640), named BrFLS. Compared to wildtype, the expression level of BrFLS was significantly reduced in the mutants, while BrDFR, which is involved in the anthocyanin biosynthesis and competes with FLS for the common substrate dihydroflavonols, was increased. The flavonol synthase activity decreased, and dihydroflavonol 4-reductase activity was elevated. Differentially accumulated flavonoid metabolites were detected between wildtype and aam1, which were enriched primarily in flavonol and anthocyanin pathways. Our results revealed that mutations in the BrFLS gene could contribute to anthocyanin accumulation and provide a new target for Chinese cabbage color modification.
Asunto(s)
Brassica , Oxidorreductasas , Proteínas de Plantas , Antocianinas , Brassica/enzimología , Brassica/genética , Flavonoides , Mutación , Oxidorreductasas/genética , Proteínas de Plantas/genéticaRESUMEN
KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.
Asunto(s)
Brassica , Hojas de la Planta , Transaminasas , Ceras , Alelos , Brassica/genética , Mutación , Fenotipo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Polimorfismo de Nucleótido Simple , Transaminasas/genética , Ceras/química , Ceras/metabolismoRESUMEN
KEY MESSAGE: The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.
Asunto(s)
Brassica rapa , Brassica , Infertilidad Vegetal , Transportadoras de Casetes de Unión a ATP/genética , Brassica/genética , Brassica rapa/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Mutación , Infertilidad Vegetal/genética , Proteínas de Plantas/genéticaRESUMEN
The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.