RESUMEN
STING transverses the endoplasmic reticulum (ER), Golgi, and endosomal compartments before its degradation within the lysosomes. In this issue of Immunity, Fang et al. demonstrate that the enrichment of cholesterol and sphingomyelin in the trans-Golgi network and endosomes mediated by the ARMH3-PI4KB-PI4P pathway plays a pivotal role in STING activation under cGAS-dependent and -independent conditions.
Asunto(s)
Aparato de Golgi , Nucleotidiltransferasas , Aparato de Golgi/metabolismo , Nucleotidiltransferasas/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Inmunidad InnataRESUMEN
Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Transactivadores/genética , Herpesvirus Humano 8/genética , Replicación Viral , Regulación Viral de la Expresión Génica , Activación Viral , Proteasas Ubiquitina-Específicas/metabolismoRESUMEN
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Asunto(s)
COVID-19 , Coronavirus Humano 229E , Células T Asesinas Naturales , Humanos , Animales , Ratones , Evasión Inmune , SARS-CoV-2RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.
Asunto(s)
Antivirales , Aspartato Carbamoiltransferasa , Tratamiento Farmacológico de COVID-19 , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante) , Dihidroorotasa , Inhibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicación Viral , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Dihidroorotasa/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Ratones , Pirimidinas/antagonistas & inhibidores , Pirimidinas/biosíntesis , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Factor de Transcripción ReIA/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacosRESUMEN
RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homolog thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme.
Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/inmunología , ARN Helicasas DEAD-box/inmunología , Gammaherpesvirinae/inmunología , Evasión Inmune/genética , ARN Viral/inmunología , Proteínas Virales/inmunología , Amidas/metabolismo , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Línea Celular , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Activación Enzimática , Fibroblastos/enzimología , Fibroblastos/inmunología , Fibroblastos/virología , Gammaherpesvirinae/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Ratones , Imitación Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , Receptores Inmunológicos , Transducción de Señal , Proteínas Virales/genéticaRESUMEN
Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesis PYCR gene and proline degradation PRODH gene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion of PYCR expression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.
Asunto(s)
Transformación Celular Neoplásica/patología , Herpesvirus Humano 8/metabolismo , Prolina/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Sarcoma de Kaposi/patología , Proteínas Virales/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Proliferación Celular , Humanos , Metabolómica , Ratones , Prolina Oxidasa/metabolismo , Sarcoma de Kaposi/virología , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto , delta-1-Pirrolina-5-Carboxilato ReductasaRESUMEN
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally to over 200 countries with more than 23 million confirmed cases and at least 800,000 fatalities as of 23 August 2020. Declared a pandemic on March 11 by World Health Organization, the disease caused by SARS-CoV-2 infection, called coronavirus disease 2019 (COVID-19), has become a global public health crisis that challenged all national healthcare systems. This review summarized the current knowledge about virologic and pathogenic characteristics of SARS-CoV-2 with emphasis on potential immunomodulatory mechanism and drug development. With multiple emerging technologies and cross-disciplinary approaches proving to be crucial in our global response against COVID-19, the application of PROteolysis TArgeting Chimeras strategy, CRISPR-Cas9 gene editing technology, and Single-Nucleotide-Specific Programmable Riboregulators technology in developing antiviral drugs and detecting infectious diseases are proposed here. We also discussed the available but still limited epidemiology of COVID-19 as well as the ongoing efforts on vaccine development. In brief, we conducted an in-depth analysis of the pathogenesis of SARS-CoV-2 and reviewed the therapeutic options for COVID-19. We also proposed key research directions in the future that may help uncover more underlying molecular mechanisms governing the pathology of COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/uso terapéutico , Humanos , Pandemias , Salud Pública , SARS-CoV-2/genéticaRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases, both of which contribute to the development of KSHV-induced malignancies. Among the numerous factors identified to regulate the KSHV life cycle, oxidative stress, caused by imbalanced clearing and production of reactive oxygen species (ROS), has been shown to robustly disrupt KSHV latency and induce viral lytic replication. In this study, we identified an important role of the antioxidant defense factor forkhead box protein O1 (FoxO1) in the KSHV life cycle. Either chemical inhibition of the FoxO1 function or knockdown of FoxO1 expression led to an increase in the intracellular ROS level that was subsequently sufficient to disrupt KSHV latency and induce viral lytic reactivation. On the other hand, treatment with N-acetyl-l-cysteine (NAC), an oxygen free radical scavenger, led to a reduction in the FoxO1 inhibition-induced ROS level and, ultimately, the attenuation of KSHV lytic reactivation. These findings reveal that FoxO1 plays a critical role in keeping KSHV latency in check by maintaining the intracellular redox balance.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several cancers, including Kaposi's sarcoma (KS). Both the KSHV latent and lytic replication phases are important for the development of KS. Identification of factors regulating the KSHV latent phase-to-lytic phase switch can provide insights into the pathogenesis of KSHV-induced malignancies. In this study, we show that the antioxidant defense factor forkhead box protein O1 (FoxO1) maintains KSHV latency by suppressing viral lytic replication. Inhibition of FoxO1 disrupts KSHV latency and induces viral lytic replication by increasing the intracellular ROS level. Significantly, treatment with an oxygen free radical scavenger, N-acetyl-l-cysteine (NAC), attenuated the FoxO1 inhibition-induced intracellular ROS level and KSHV lytic replication. Our works reveal a critical role of FoxO1 in suppressing KSHV lytic replication, which could be targeted for antiviral therapy.
Asunto(s)
Proteína Forkhead Box O1/metabolismo , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología , Activación Viral , Latencia del Virus , Replicación Viral , Células Cultivadas , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/genética , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sarcoma de Kaposi/genéticaRESUMEN
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Asunto(s)
Herpesviridae , Adulto , Aggregatibacter actinomycetemcomitans , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Porphyromonas gingivalisRESUMEN
Hepcidin, a multifunctional hormone oligopeptide, not only exhibits a regulatory role in iron metabolism, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-hepcidin was 258 bp and encoded 85 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-hepcidin was observed in liver. Aeromonas hydrophila challenge can sharply increased WR-hepcidin mRNA expression in liver, trunk kidney and spleen. The purified WR-hepcidin fusion peptide can directly bind to A. hydrophila and Streptococcus agalactiae, reduce the relative bacterial activity, limit bacterial growth and attenuate their dissemination to tissues in vivo. In addition, the treatment of WR-hepcidin fusion protein can diminish the production of pro-inflammatory cytokines. These results indicated that WR-hepcidin can play a negative regulatory role in bacteria-stimulated pro-inflammatory cytokines production and MyD88-IRAK4 activation.
Asunto(s)
Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/inmunología , Carpa Dorada/genética , Infecciones por Bacterias Gramnegativas/veterinaria , Hepcidinas/química , Aeromonas hydrophila , Animales , Femenino , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Hibridación Genética , MasculinoRESUMEN
The viral Bcl-2 homolog (vBcl2) of Kaposi's sarcoma-associated herpesvirus (KSHV) displays efficient antiapoptotic and antiautophagic activity through its central BH3 domain, which functions to prolong the life span of virus-infected cells and ultimately enhances virus replication and latency. Independent of its antiapoptotic and antiautophagic activity, vBcl2 also plays an essential role in KSHV lytic replication through its amino-terminal amino acids (aa) 11 to 20. Here, we report a novel molecular mechanism of vBcl2-mediated regulation of KSHV lytic replication. vBcl2 specifically bound the tegument protein open reading frame 55 (ORF55) through its amino-terminal aa 11 to 20, allowing their association with virions. Consequently, the vBcl2 peptide derived from vBcl2 aa 11 to 20 effectively disrupted the interaction between vBcl2 and ORF55, inhibiting the incorporation of the ORF55 tegument protein into virions. This study provides new insight into vBcl2's function in KSHV virion assembly that is separable from its inhibitory role in host apoptosis and autophagy.IMPORTANCE KSHV, an important human pathogen accounting for a large percentage of virally caused cancers worldwide, has evolved a variety of stratagems for evading host immune responses to establish lifelong persistent infection. Upon viral infection, infected cells can go through programmed cell death, including apoptosis and autophagy, which plays an effective role in antiviral responses. To counter the host response, KSHV vBcl2 efficiently blocks apoptosis and autophagy to persist for the life span of virus-infected cells. Besides its anti-programmed-cell-death activity, vBcl2 also interacts with the ORF55 tegument protein for virion assembly in infected cells. Interestingly, the vBcl2 peptide disrupts the vBcl2-ORF55 interaction and effectively inhibits KSHV virion assembly. This study indicates that KSHV vBcl2 harbors at least three genetically separable functions to modulate both host cell death signaling and virion production and that the vBcl2 peptide can be developed as an anti-KSHV therapeutic application.
Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Oncogénicas/fisiología , Sistemas de Lectura Abierta , Proteínas Virales/fisiología , Ensamble de Virus , Apoptosis , Autofagia , Secuencia de Bases , Replicación del ADN , ADN Viral/genética , Expresión Génica , Técnicas de Inactivación de Genes , Genoma Viral , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Proteínas Oncogénicas/genética , Proteínas Virales/genéticaRESUMEN
Signal transducer and activator of transcription 1 (STAT1) plays an important role in the Janus kinase (JAK)-STAT signaling of human and mammals; however, the mechanism of STAT1 in innate immune activation of teleost fishes remains largely unknown. In this study, two STAT1 homologues (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Both bcSTAT1a and bcSTAT1b transcription in host cells was obviously increased in response to the stimulation of poly (I:C), lipopolysaccharide (LPS), grass carp reovirus (GCRV) and interferon (IFN); however, the increase rate of bcSTAT1b transcription post stimulation was obviously higher than that of bcSTAT1a. bcSTAT1a and bcSTAT1b were distributed in both cytoplasm and nucleus in the immunofluorescence staining assay. Self-association of bcSTAT1a and bcSTAT1b, and the interaction between bcSTAT1a and bcSTAT1b have been detected through co-immunoprecipitation (co-IP) assay; and the data of native polyacrylamide gel electrophoresis (PAGE) implied that bcSTAT1a and bcSTAT1b might form homodimer and heterodimer in vivo like their mammalian counterparts. Both bcSTAT1a and bcSTAT1b presented IFN-inducing ability in report assay, and both bcSTAT1a and bcSTAT1b showed antiviral activities against GCRV in EPC cells. Our data support the conclusion that both bcSTAT1a and bcSTAT1b play important roles in host antiviral innate immune activation initiated by GCRV.
Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Expresión Génica/inmunología , Inmunidad Innata/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia , Factor de Transcripción STAT1/química , Alineación de Secuencia/veterinariaRESUMEN
Aerobic glycolysis is essential for supporting the fast growth of a variety of cancers. However, its role in the survival of cancer cells under stress conditions is unclear. We have previously reported an efficient model of gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cellular transformation of rat primary mesenchymal stem cells. KSHV-transformed cells efficiently induce tumors in nude mice with pathological features reminiscent of Kaposi's sarcoma tumors. Here, we report that KSHV promotes cell survival and cellular transformation by suppressing aerobic glycolysis and oxidative phosphorylation under nutrient stress. Specifically, KSHV microRNAs and vFLIP suppress glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. While overexpression of the transporters rescues the glycolytic activity, it induces apoptosis and reduces colony formation efficiency in softagar under glucose deprivation. Mechanistically, GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines compared to a Burkitt's lymphoma cell line BJAB, and KSHV infection of BJAB cells reduced aerobic glycolysis. These results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under stress conditions.
Asunto(s)
Adaptación Fisiológica/fisiología , Transformación Celular Viral/fisiología , Infecciones por Herpesviridae/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Glucólisis/fisiología , Herpesvirus Humano 8/metabolismo , Humanos , Linfoma de Efusión Primaria/metabolismo , Linfoma de Efusión Primaria/virología , Microscopía Confocal , Reacción en Cadena de la Polimerasa , RatasRESUMEN
Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or "aging." Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.
Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Proteínas/metabolismo , Transducción de Señal , Animales , Catálisis , Citocinas/biosíntesis , Humanos , Evasión Inmune , Proteolisis , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Ácido Retinoico/metabolismoRESUMEN
Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Secuencia de Aminoácidos , Humanos , Inductores de Interferón/inmunología , Interferones/metabolismo , FN-kappa B/metabolismo , Unión Proteica/fisiologíaRESUMEN
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi's sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of "constitutive" NFAT activation by viral GPCRs.
Asunto(s)
Transformación Celular Viral , Citomegalovirus/metabolismo , Herpesvirus Humano 8/metabolismo , Factores de Transcripción NFATC/metabolismo , Receptores de Quimiocina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Virales/metabolismo , Animales , Citomegalovirus/genética , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Ratones , Factores de Transcripción NFATC/genética , Receptores de Quimiocina/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Proteínas Virales/genéticaRESUMEN
Human gamma herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are capable of inducing tumors, particularly in in immune-compromised individuals. Due to the stringent host tropism, rodents are resistant to infection by human gamma herpesviruses, creating a significant barrier for the in vivo study of viral genes that contribute to tumorigenesis. The closely-related murine gamma herpesvirus 68 (γHV68) efficiently infects laboratory mouse strains and establishes robust persistent infection without causing apparent disease. Here, we report that a recombinant γHV68 carrying the KSHV G protein-coupled receptor (kGPCR) in place of its murine counterpart induces angiogenic tumors in infected mice. Although viral GPCRs are conserved in all gamma herpesviruses, kGPCR potently activated downstream signaling and induced tumor formation in nude mouse, whereas γHV68 GPCR failed to do so. Recombinant γHV68 carrying kGPCR demonstrated more robust lytic replication ex vivo than wild-type γHV68, although both viruses underwent similar acute and latent infection in vivo. Infection of immunosuppressed mice with γHV68 carrying kGPCR, but not wild-type γHV68, induced tumors in mice that exhibited angiogenic and inflammatory features shared with human Kaposi's sarcoma. Immunohistochemistry staining identified abundant latently-infected cells and a small number of cells supporting lytic replication in tumor tissue. Thus, mouse infection with a recombinant γHV68 carrying kGPCR provides a useful small animal model for tumorigenesis induced by a human gamma herpesvirus gene in the setting of a natural course of infection.
Asunto(s)
Proteínas de Unión al GTP/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/metabolismo , Rhadinovirus/genética , Infecciones Tumorales por Virus/virología , Proteínas Virales/metabolismo , Latencia del Virus/fisiología , Animales , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Herpesvirus Humano 8/genética , Humanos , Ratones , Neovascularización Patológica/virología , Proteínas Virales/genética , Latencia del Virus/inmunologíaRESUMEN
UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298-5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE: The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication.
Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Oncogénicas/fisiología , Proteínas Virales/fisiología , Replicación Viral/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Apoptosis , Autofagia , Secuencia de Bases , Línea Celular , Replicación del ADN , ADN Viral/genética , Expresión Génica , Técnicas de Inactivación de Genes , Genoma Viral , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Replicación Viral/genéticaRESUMEN
Transcription of herpesvirus late genes depends on several virus-encoded proteins whose function is not completely understood. Here, we identify a viral trimeric complex of Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 31 (ORF31), ORF24, and ORF34 that is required for late gene expression but not viral DNA replication. We found that (i) ORF34 bridges the interaction between ORF31 and ORF24, (ii) the amino-terminal cysteine-rich and carboxyl-terminal basic domains of ORF31 mediate the ORF31-ORF34 interaction required for late gene expression, and (iii) a complex consisting of ORF24, ORF31, and ORF34 specifically binds to the K8.1 late promoter. Together, our results support the model that a subset of lytic viral proteins assembles into a transcriptional activator complex to induce expression of late genes.
Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Multimerización de Proteína , Proteínas Virales/metabolismo , Humanos , Unión Proteica , Mapeo de Interacción de ProteínasRESUMEN
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that transmit diverse extracellular signals across a membrane. Herpesvirus genomes encode multiple GPCRs implicated in viral pathogenesis. Kaposi sarcoma-associated herpesvirus GPCR (kGPCR) activates proliferative pathways and, when expressed in endothelium in mice, sufficiently induces angiogenic tumor resembling human Kaposi's sarcoma. IKKε, an IκB kinase (IKK)-related kinase, is implicated in inflammation-driven tumorigenesis. We report here that IKKε is critically required for kGPCR tumorigenesis and links kGPCR to NF-κB activation. Using kGPCR-induced tumor models, we found that IKKε expression was drastically up-regulated in Kaposi sarcoma-like lesions and that loss of IKKε abolished tumor formation. Moreover, kGPCR interacted with and activated IKKε. Activated IKKε promoted NF-κB subunit RelA (also known as p65) phosphorylation, which correlated with NF-κB activation and inflammatory cytokine expression. The robust expression of IKKε and phosphorylated RelA was observed in human Kaposi sarcoma. Finally, a kinase-defective mutant of IKKε effectively abrogated NF-κB activation and tumorigenesis induced by kGPCR. Collectively, our findings uncover a critical IKKε in promoting NF-κB activation and tumorigenesis induced by a viral GPCR.